617 research outputs found

    Chiral Nonanalytic Behaviour: The Edinburgh Plot

    Get PDF
    The Edinburgh Plot is a scale independent way of presenting lattice QCD calculations over a wide range of quark masses. In this sense it is appealing as an indicator of how the approach to physical quark masses is progressing. The difficulty remains that even the most state of the art calculations are still at quark masses that are too heavy to apply dimensionally-regulated chiral perturbation theory. We present a method allowing predictions of the behaviour of the Edinburgh plot, in both the continuum, and on the lattice.Comment: 3 pages, 4 figures, Lattice2002(Spectrum

    Excited Baryons from the FLIC Fermion Action

    Get PDF
    Masses of positive and negative parity excited nucleons and hyperons are calculated in quenched lattice QCD using an O(a^2) improved gluon action and a fat-link clover fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier N* simulations with improved actions, and exhibit a clear mass splitting between the nucleon and its parity partner, as well as a small mass splitting between the two low-lying J^P={1/2}^- N* states. Study of different Lambda interpolating fields suggests a similar splitting between the lowest two {1/2}^- Lambda* states, although the empirical mass suppression of the Lambda*(1405) is not seen.Comment: 3 pages, 3 figures, Lattice2002(QCD Spectrum and Quark Masses

    A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    The outcome of the SAMPLE Experiment suggests that the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), may be greater than zero. This result is very difficult to reconcile with expectations based on the successful baryon magnetic-moment phenomenology of the constituent quark model. We show that careful consideration of chiral symmetry reveals some rather unexpected properties of QCD. In particular, it is found that the valence u-quark contribution to the magnetic moment of the neutron can differ by more than 50% from its contribution to the Xi^0 magnetic moment. This hitherto unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a systematic error, arising from the relatively large strange quark mass used in existing lattice calculations, that would tend to shift G_M^s(0) towards small positive values.Comment: RevTeX, 20 pages, 12 figure

    Lattice QCD Calculations of Hadron Structure: Constituent Quarks and Chiral Symmetry

    Get PDF
    New data from parity-violating experiments on the deuteron now allow isolation of the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), without the uncertainty surrounding the anapole moment of the nucleon. Still, best estimates place G_M^s(0) > 0. It is illustrated how this experimental result challenges the very cornerstone of the constituent quark model. The chiral physics giving rise to G_M^s(0) \sim 0 is illustrated.Comment: Invited talk presented by DBL at the 16th Int. Conf. on Few Body Problems (Taipei, March 6-10, 2000); 9 pages, 5 figure

    An analysis of the vector meson spectrum from lattice QCD

    Full text link
    We re-analyse meson sector data from the CP-PACS collaboration's dynamical simulations. Our analysis uses several different approaches, and compares the standard naive linear fit with the Adelaide Anzatz. We find that setting the scale using the J parameter gives remarkable agreement among data sets. Our predictions for the rho and phi masses have very small statistical errors, ~ 3 MeV, but the discrepancy between the different fitting approaches is ~ 40 MeV.Comment: 3 pages, 4 figures, 3 tables, proceedings for Lattice2003(Spectrum

    Baryon Mass Extrapolation

    Get PDF
    Consideration of the analytical properties of pion-induced baryon self-energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct heavy-quark limit and have the advantage of containing information on the extended structure of hadrons. The forms involve only three unknown parameters which may be optimized by fitting to present lattice data. Recent dynamical fermion results from CP-PACS and UK-QCD are extrapolated using these new functional forms. We also use these functions to probe the limit of the chiral perturbative regime and shed light on the applicability of chiral perturbation theory to the extrapolation of present lattice QCD results.Comment: LATTICE99 (QCD Spectrum and Quark Masses

    Baryon resonances from a novel fat-link fermion action

    Get PDF
    We present first results for masses of positive and negative parity excited baryons in lattice QCD using an O(a^2) improved gluon action and a Fat Link Irrelevant Clover (FLIC) fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner, even for the Wilson fermion action. The results also indicate a splitting between the lowest J^P = 1/2^- states for the two standard nucleon interpolating fields.Comment: 5 pages, 3 figures, talk given by W.Melnitchouk at LHP 2001 workshop, Cairns, Australi

    Chiral Analysis of Quenched Baryon Masses

    Get PDF
    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading non-analytic behaviour (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure

    Chiral extrapolation of nucleon magnetic form factors

    Get PDF
    The extrapolation of nucleon magnetic form factors calculated within lattice QCD is investigated within a framework based upon heavy baryon chiral effective-field theory. All one-loop graphs are considered at arbitrary momentum transfer and all octet and decuplet baryons are included in the intermediate states. Finite range regularisation is applied to improve the convergence in the quark-mass expansion. At each value of the momentum transfer (Q2Q^2), a separate extrapolation to the physical pion mass is carried out as a function of mπm_\pi alone. Because of the large values of Q2Q^2 involved, the role of the pion form factor in the standard pion-loop integrals is also investigated. The resulting values of the form factors at the physical pion mass are compared with experimental data as a function of Q2Q^2 and demonstrate the utility and accuracy of the chiral extrapolation methods presented herein.Comment: 19 pages, 10 figure
    • …
    corecore