376 research outputs found
Gravitational waves from a test particle scattered by a neutron star: Axial mode case
Using a metric perturbation method, we study gravitational waves from a test
particle scattered by a spherically symmetric relativistic star. We calculate
the energy spectrum and the waveform of gravitational waves for axial modes.
Since metric perturbations in axial modes do not couple to the matter fluid of
the star, emitted waves for a normal neutron star show only one peak in the
spectrum, which corresponds to the orbital frequency at the turning point,
where the gravitational field is strongest. However, for an ultracompact star
(the radius ), another type of resonant periodic peak appears in
the spectrum. This is just because of an excitation by a scattered particle of
axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This
excitation comes from the existence of the potential minimum inside of a star.
We also find for an ultracompact star many small periodic peaks at the
frequency region beyond the maximum of the potential, which would be due to a
resonance of two waves reflected by two potential barriers (Regge-Wheeler type
and one at the center of the star). Such resonant peaks appear neither for a
normal neutron star nor for a Schwarzschild black hole. Consequently, even if
we analyze the energy spectrum of gravitational waves only for axial modes, it
would be possible to distinguish between an ultracompact star and a normal
neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to
Phys. Rev.
Radiative Falloff in Neutron Star Spacetimes
We systematically study late-time tails of scalar waves propagating in
neutron star spacetimes. We consider uniform density neutron stars, for which
the background spacetime is analytic and the compaction of the star can be
varied continously between the Newtonian limit 2M/R << 1 and the relativistic
Buchdahl limit 2M/R = 8/9. We study the reflection of a finite wave packet off
neutron stars of different compactions 2M/R and find that a Newtonian, an
intermediate, and a highly relativistic regime can be clearly distinguished. In
the highly relativistic regime, the reflected signal is dominated by
quasi-periodic peaks, which originate from the wave packet bouncing back and
forth between the center of the star and the maximum of the background
curvature potential at R ~ 3 M. Between these peaks, the field decays according
to a power-law. In the Buchdahl limit 2M/R -> 8/9 the light travel time between
the center and the maximum or the curvature potential grows without bound, so
that the first peak arrives only at infinitely late time. The modes of neutron
stars can therefore no longer be excited in the ultra-relativistic limit, and
it is in this sense that the late-time radiative decay from neutron stars
looses all its features and gives rise to power-law tails reminiscent of
Schwarzschild black holes.Comment: 10 pages, 7 figures, to appear in PR
Restricting quark matter models by gravitational wave observation
We consider the possibilities for obtaining information about the equation of
state for quark matter by using future direct observational data on
gravitational waves. We study the nonradial oscillations of both fluid and
spacetime modes of pure quark stars. If we observe the and the lowest
modes from quark stars, by using the simultaneously obtained
radiation radius we can constrain the bag constant with reasonable
accuracy, independently of the quark mass.Comment: To appear in Phys. Rev.
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
Measurement of triple gauge boson couplings from WW production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair
data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass
energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining
with our previous measurements at centre-of-mass energies of 161-183 GeV we
obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110
+0.058 -0.055, where the errors include both statistical and systematic
uncertainties and each coupling is determined by setting the other two
couplings to their SM values. These results are consistent with the Standard
Model expectations.Comment: 28 pages, 8 figures, submitted to Eur. Phys. J.
Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from
hadronic Z0 decay events produced in e+e- annihilations. A subsample of these
jets is identified which exhibits a large gap in the rapidity distribution of
particles within the jet. After imposing the requirement of a rapidity gap, the
gluon jet purity is 86%. These jets are observed to demonstrate a high degree
of sensitivity to the presence of color reconnection, i.e. higher order QCD
processes affecting the underlying color structure. We use our data to test
three QCD models which include a simulation of color reconnection: one in the
Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman
in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection
models can describe our gluon jet measurements only if very large values are
used for the cutoff parameters which serve to terminate the parton showers, and
that the description of inclusive Z0 data is significantly degraded in this
case. We conclude that color reconnection as implemented by these two models is
disfavored. The signal from the Herwig color reconnection model is less clear
and we do not obtain a definite conclusion concerning this model. In a separate
study, we follow recent theoretical suggestions and search for glueball-like
objects in the leading part of the gluon jets. No clear evidence is observed
for these objects.Comment: 42 pages, 18 figure
Search for the Standard Model Higgs Boson with the OPAL Detector at LEP
This paper summarises the search for the Standard Model Higgs boson in e+e-
collisions at centre-of-mass energies up to 209 GeV performed by the OPAL
Collaboration at LEP. The consistency of the data with the background
hypothesis and various Higgs boson mass hypotheses is examined. No indication
of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained
on the mass of the Standard Model Higgs boson at the 95% CL.Comment: 51 pages, 21 figure
A study of charm production in beauty decays with the OPAL detector at LEP
Using an inclusive method, BR(b -> D\bar{D}X) has been measured in hadronic
Z^0 decays with the OPAL detector at LEP. The impact parameter significance of
tracks opposite tagged b-jets is used to differentiate b -> D\bar{D}X decays
from other decays. Using this result, the average number of charm and
anti-charm quarks produced per beauty quark decay, n_c, is determined.Comment: 20 pages, 4 figure
Measurement of the Hadronic Cross-Section for the Scattering of Two Virtual Photons at LEP
The interaction of virtual photons is investigated using the reaction e+e- ->
e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass
energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9
GeV^2. The measured cross-sections are compared to predictions of the Quark
Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the
NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations.
PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well,
whereas the cross-section predicted by a Leading Order BFKL calculation is too
large.Comment: 30 pages, 10 figures, Submitted to Eur.Phys.J.
Search for Nearly Mass-Degenerate Charginos and Neutralinos at LEP
A search was performed for charginos with masses close to the mass of the
lightest neutralino in e+e- collisions at centre-of-mass energies of 189-209
GeV recorded by the OPAL detector at LEP. Events were selected if they had an
observed high-energy photon from initial state radiation, reducing the dominant
background from two-photon scattering to a negligible level. No significant
excess over Standard Model expectations has been observed in the analysed data
set corresponding to an integrated luminosity of 570pb-1. Upper limits were
derived on the chargino pair-productin cross-section, and lower limits on the
chargino mass were derived in the context of the Minimal Supersymmetric
Extension of the Standard Model for the gravity and anomaly mediated
Supersymmetry breaking scenarios.Comment: 26 pages, 9 figure
- …