9 research outputs found

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Three novel bacteriophages isolated from the East African Rift Valley soda lakes

    No full text
    Additional file 1: Figure S1. Whole genome alignment of phage Shbh1 with six of its closest relatives. Similarly coloured regions indicate homology or local collinear blocks (LCB) between nucleotide sequences, with the level of similarity indicated by the height of the bars within each LCB. Genome alignments were performed using MAUVE.Additional file 2: Table S1. Predicted open reading frames on Shpa and closest BLASTp hit on the NCBI database.Additional file 3: Table S2. Predicted open reading frames on Mgbh1 and closest BLASTp hit on the NCBI database.Additional file 4: Table S3. Predicted open reading frames on Shbh1 and closest BLASTp hit on the NCBI database.Additional file 5: Figure S2. GC skew analysis of the Shbh1 genome showing putative replication origin (ori) and termination sites (ter) calculated using a window size of 1000 bp and a step size of 100 bp.Additional file 6: Figure S4. GC skew analysis of the Shpa genome showing putative replication origin (ori) and termination sites (ter) calculated using a window size of 1000 bp and a step size of 100 bp.Additional file 7: Figure S3. GC skew analysis of the Mgbh1 genome showing putative replication origin (ori) and termination sites (ter) calculated using a window size of 1000 bp and a step size of 100 bp.BACKGROUND : Soda lakes are unique environments in terms of their physical characteristics and the biology they harbour. Although well studied with respect to their microbial composition, their viral compositions have not, and consequently few bacteriophages that infect bacteria from haloalkaline environments have been described. METHODS : Bacteria were isolated from sediment samples of lakes Magadi and Shala. Three phages were isolated on two different Bacillus species and one Paracoccus species using agar overlays. The growth characteristics of each phage in its host was investigated and the genome sequences determined and analysed by comparison with known phages. RESULTS : Phage Shbh1 belongs to the family Myoviridae while Mgbh1 and Shpa belong to the Siphoviridae family. Tetranucleotide usage frequencies and G + C content suggests that Shbh1 and Mgbh1 do not regularly infect, and have therefore not evolved with, the hosts they were isolated on here. Shbh1 was shown capable of infecting two different Bacillus species from the two different lakes demonstrating its potential broad-host range. Comparative analysis of their genome sequence with known phages revealed that, although novel, Shbh1 does share substantial amino acid similarity with previously described Bacillus infecting phages (Grass, phiNIT1 and phiAGATE) and belongs to the Bastille group, while Mgbh1 and Shpa are highly novel. CONCLUSION : The addition of these phages to current databases should help with metagenome/metavirome annotation efforts. We describe a highly novel Paracoccus infecting virus (Shpa) which together with NgoΊ6 and vB_PmaS_IMEP1 is one of only three phages known to infect Paracoccus species but does not show similarity to these phages.The National Research Foundation (NRF) of South Africahttp://www.virologyj.comam2017Genetic

    Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection

    No full text
    The majority of known bacteriophages have long noncontractile tails (Siphoviridae) that serve as a pipeline for genome delivery into the host cytoplasm. The tail extremity distal from the phage head is an adsorption device that recognises the bacterial receptor at the host cell surface. This interaction generates a signal transmitted to the head that leads to DNA release. We have determined structures of the bacteriophage SPP1 tail before and after DNA ejection. The results reveal extensive structural rearrangements in the internal wall of the tail tube. We propose that the adsorption device–receptor interaction triggers a conformational switch that is propagated as a domino-like cascade along the 1600 Å-long helical tail structure to reach the head-to-tail connector. This leads to opening of the connector culminating in DNA exit from the head into the host cell through the tail tube
    corecore