17 research outputs found

    Optical extinction of size-controlled aerosols generated from squid chromatophore pigments

    No full text
    Nanophotonic granules populate the interior of cephalopod chromatophores, contributing to their visible color by selectively absorbing and scattering light. Inspired by the performance of these granules, we fabricated nanostructured aerosols by nebulizing a pigment solution extracted from native squid chromatophores. We determined their optical extinction using cavity ring-down spectroscopy and show how extinction cross section is dependent on both particle concentration and size. This work not only advances the fundamental knowledge of the optical properties of chromatophore pigments but also serves as a proof-of-concept method that can be adapted to develop coatings derived from these pigmentary aerosols

    Inkjet Printing Bio‐Inspired Electrochromic Pixels

    No full text
    Abstract In this report the design, fabrication, and testing of inkjet‐printed electrochromic pixels (ECPs) incorporating the biochrome, xanthommatin (Xa) as programmable display units is described. As a redox sensitive chromophore, Xa is present in some species as a physiological indicator with red (reduced) or yellow (oxidized) colors associated with different behavioral or developmental stages. These features have been recently leveraged in some materials applications, illustrating a bio‐inspired design solution to color‐changing sensors and displays. This paper describes an extension of these applications to print individually addressable ECPs that can be processed in a mild annealing step to introduce localized conductivity on initially nonconductive substrates. When formulated together with a poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) carrier ink, an addition of 0.19 wt% Xa is enough to generate dynamic ECPs which can be batch printed as lateral electrodes on any substrate to serve as both conductors and display units across electrically isolated boundaries. Application of low potentials triggers reversible color changes that span the red/yellow color space and can cycle for days. These results represent an important step towards the incorporation of alternative active materials like Xa to manufacture and scale low‐power, color‐changing pixels and patterns

    Color‐Changing Paints Enabled by Photoresponsive Combinations of Bio‐Inspired Colorants and Semiconductors

    No full text
    Abstract Modern paints and coatings are designed for a variety of applications, ranging from fine art to extraterrestrial thermal control. These systems can be engineered to provide lasting color, but there are a limited number of materials that can undergo transient changes in their visual appearance in response to external stimuli without requirements for advanced fabrication strategies. The authors describe color‐changing paint formulations that leverage the redox‐dependent absorption profile of xanthommatin, a small‐molecule colorant found throughout biology, and the electronic properties of titanium dioxide, a ubiquitous whitening agent in commercial coatings. This combination yields reversible photoreduction upon exposure to sunlight, shifting from the oxidized (yellow) form of xanthommatin, to the reduced (red) state. The extent of photoreduction is dependent on the loading density and size of titanium dioxide particles, generating changes in hue angle as large as 77% upon irradiation. These coatings can be blended with non‐responsive supplemental colorants to expand the accessible color palette, and irradiated through masks to create transient, disappearing artwork. These formulations demonstrate energy‐efficient photochromism using a simple combination of a redox‐active dye and metal oxide semiconductor, highlighting the utility of these materials for the development of optically dynamic light‐harvesting materials

    Rapid, High Affinity Binding by a Fluorescein Templated Copolymer Combining Covalent, Hydrophobic, and Acid–Base Noncovalent Crosslinks

    No full text
    A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid–base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 108 M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly

    Contributions of Phenoxazone-Based Pigments to the Structure and Function of Nanostructured Granules in Squid Chromatophores

    No full text
    Understanding the structure–function relationships of pigment-based nanostructures can provide insight into the molecular mechanisms behind biological signaling, camouflage, or communication experienced in many species. In squid Doryteuthis pealeii, combinations of phenoxazone-based pigments are identified as the source of visible color within the nanostructured granules that populate dermal chromatophore organs. In the absence of the pigments, granules experience a reduction in diameter with the loss of visible color, suggesting important structural and functional features. Energy gaps are estimated from electronic absorption spectra, revealing highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energies that are dependent upon the varying carboxylated states of the pigment. These results implicate a hierarchical mechanism for the bulk coloration in cephalopods originating from the molecular components confined within in the nanostructured granules of chromatophore organs
    corecore