25 research outputs found

    Electric propulsion using C.sub.60 molecules

    Get PDF
    Fullerene propellants, which are stable carbon cage structures composed of even numbers of carbon atoms in the range of about 32 to 200 atoms, particularly a combination of conveniently obtainable C.sub.60 and C.sub.70, may be carried in solid form in a spacecraft, sublimated to produce the appropriate molecular propellant such as C.sub.60 or C.sub.70, which may then be ionized by DC discharge or RF radiation to efficiently produce specific impulses in the range above 1000 lbf -s/lbm

    Interleaved difference-frequency-generation for mid-infrared microcomb spectral densification

    Get PDF
    Generation of mid-infrared combs (3.3 micron band) with GigaHertz line spacing is demonstrated by interleaved difference-frequency-generation. The method, applied to a 22 GHz repetition-rate microcomb, is useful for spectral densification of sparse microcomb spectra

    Interleaved difference-frequency-generation for mid-infrared microcomb spectral densification

    Get PDF
    Generation of mid-infrared combs (3.3 micron band) with GigaHertz line spacing is demonstrated by interleaved difference-frequency-generation. The method, applied to a 22 GHz repetition-rate microcomb, is useful for spectral densification of sparse microcomb spectra

    An all-photonic, dynamic device for flattening the spectrum of a laser frequency comb for precise calibration of radial velocity measurements

    Full text link
    Laser frequency combs are fast becoming critical to reaching the highest radial velocity precisions. One shortcoming is the highly variable brightness of the comb lines across the spectrum (up to 4-5 orders of magnitude). This can result in some lines saturating while others are at low signal and lost in the noise. Losing lines to either of these effects reduces the precision and hence effectiveness of the comb. In addition, the brightness of the comb lines can vary with time which could drive comb lines with initially reasonable SNR's into the two regimes described above. To mitigate these two effects, laser frequency combs use optical flattener's. Flattener's are typically bulk optic setups that disperse the comb light with a grating, and then use a spatial light modulator to control the amplitude across the spectrum before recombining the light into another single mode fiber and sending it to the spectrograph. These setups can be large (small bench top), expensive (several hundred thousand dollars) and have limited stability. To address these issues, we have developed an all-photonic spectrum flattener on a chip. The device is constructed from optical waveguides on a SiN chip. The light from the laser frequency comb's output optical fiber can be directly connected to the chip, where the light is first dispersed using an arrayed waveguide grating. To control the brightness of each channel, the light is passed through a Mach-Zehnder interferometer before being recombined with a second arrayed waveguide grating. Thermo-optic phase modulators are used in each channel before recombination to path length match the channels as needed. Here we present the results from our first generation prototype. The device operates from 1400-1800 nm (covering the H band), with 20, 20 nm wide channels.Comment: 7 pages, 5 figures, conferenc

    Flattening laser frequency comb spectra with a high dynamic range, broadband spectral shaper on-a-chip

    Full text link
    Spectral shaping is critical to many fields of science. In astronomy for example, the detection of exoplanets via the Doppler effect hinges on the ability to calibrate a high resolution spectrograph. Laser frequency combs can be used for this, but the wildly varying intensity across the spectrum can make it impossible to optimally utilize the entire comb, leading to a reduced overall precision of calibration. To circumvent this, astronomical applications of laser frequency combs rely on a bulk optic setup which can flatten the output spectrum before sending it to the spectrograph. Such flatteners require complex and expensive optical elements like spatial light modulators and have non-negligible bench top footprints. Here we present an alternative in the form of an all-photonic spectral shaper that can be used to flatten the spectrum of a laser frequency comb. The device consists of a circuit etched into a silicon nitride wafer that supports an arrayed-waveguide grating to disperse the light over hundreds of nanometers in wavelength, followed by Mach-Zehnder interferometers to control the amplitude of each channel, thermo-optic phase modulators to phase the channels and a second arrayed-waveguide grating to recombine the spectrum. The demonstrator device operates from 1400 to 1800 nm (covering the astronomical H band), with twenty 20 nm wide channels. The device allows for nearly 40 dBs of dynamic modulation of the spectrum via the Mach-Zehnders , which is greater than that offered by most spatial light modulators. With a superluminescent diode, we reduced the static spectral variation to ~3 dB, limited by the properties of the components used in the circuit and on a laser frequency comb we managed to reduce the modulation to 5 dBs, sufficient for astronomical applications.Comment: 15 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:2209.0945
    corecore