83 research outputs found

    Redistribution of ions within the active layer and upper permafrost, Yamal, Russia

    Get PDF
    A landslide-affected slope was chosen to study the ionic migration in the active layer and upper portion of permafrost. The research was conducted in two stages, in 1994 and 2001. Several boreholes, in dry and wet environments of the shearing surface of a 1989-landslide, were drilled. A background borehole on an undisturbed site was sampled as well. Each sample, collected from the core, underwent a conventional chemical cation-anion analysis. The results showed desalinization of the active layer and upper permafrost, which occurred in 7 years. Different migration rates noted for various salts determine change of ionic composition from marine pattern to continental, because mobile ions are washed away by surface and subsurface runoff, while the less mobile ones are accumulating in the upper portion of the active layer due to capillary rise and at the active layer base on a geochemical barrier

    ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎ-ΠΎΠΏΠΎΠ»Π·Π½Π΅Π²Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° для Ρ†Π΅Π»Π΅ΠΉ картографирования ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π°

    Get PDF
    A classification of cryogenic-landslide landforms is developed for mapping their distribution and dynamics. It is based on the previously suggested classification subdividing cryogenic landsliding into two main types: cryogenic translational landslides (or active-layer detachment slides), and cryogenic earth flows (or retrogressive thaw slumps). The increased proportion of retrogressive thaw slumps compared to active layer detachments in the North of West Siberia in the last decade creates the need for an expanded classification of cryogenic earth flows. One of the important issues is separating the process of landsliding and resulting landforms, which in English are covered by one term β€˜retrogressive thaw slump’. In dealing with the landforms, we distinguish (1) open and (2) closed ones. Open cryogenic-landslide landforms are those formed by the retreating of the coast bluff due to the thaw of ice or ice-rich deposits with an additional impact from wave or stream action. Closed cryogenic-landslide landforms are those initiated on a slope landward, and thawed material is delivered to the coast or stream through an erosional channel. Morphologically we distinguish thermocirques and thermoterraces depending on the shape of the retreating headwall, crescent or linear, respectively. An important issue is the type of ground ice subjected to thaw: tabular, ice-wedge or constitutional ground ice are distinguished. Landforms can be active, stabilized or ancient. One can find both single landforms and their combination. The classification is based on a significant amount of field studies and interpretation of remote sensing data. Mapping of the cryogenic-landslide landforms is suggested using the proposed classification and indication features. The classification is based on the experience obtained mainly in the north of West Siberia. Applying it to other regions may require additional studies.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° классификация ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎ-ΠΎΠΏΠΎΠ»Π·Π½Π΅Π²Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π°, сформированных ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ оползнями тСчСния (КОВЀР), для картографирования ΠΈΡ… распространСния ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π’ основС Π»Π΅ΠΆΠΈΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ объСм ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… исслСдований ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ… дистанционного зондирования Π—Π΅ΠΌΠ»ΠΈ. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ гСнСтичСскиС, морфологичСскиС ΠΈ криолитологичСскиС особСнности ΠΏΠΎΡ€ΠΎΠ΄, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ КОВЀР, ΠΈΡ… ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ€Π΅Π»ΡŒΠ΅Ρ„Π΅, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΈΡ… активности, сочСтаниС ΠΈ комплСксированиС Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… КОВЀР. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ классификация ΠΈ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для картографирования КОВЀР Π½Π° сСвСрС Π—Π°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡ€ΠΈ

    ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… торфяников, ΠΏΡ€ΠΈΠΌΡ‹ΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΊ Π°Π²Ρ‚ΠΎΠ΄ΠΎΡ€ΠΎΠ³Π΅ ЗаполярноС β€” Вазовский

    Get PDF
    The thawing of polygonal ice wedges determines the dynamics of polygonal peatland relief. The polygonal peat plateaus in the Pur-Taz interfluve account for an average of 6,5 % of the total area. The purpose of the proposed study is to establish the short-term rates and direction of change in the plateaus’ relief under the combined action of technogenic and natural factors, using monitoring data for the period 2005–2022. Based on satellite images and orthophotoplans, elements of the peat plateaus have been outlined and their areas have been determined for different time slices. The studies were carried out on a peat plateau immediately adjacent to the highway (T1) and on a background peat plateau at a distance of about 1.5 km from the highway (T2). To identify the natural causes of changes in the relief of the peat plateaus, the influence of climatic parameters is considered. The rates of relief change in natural conditions and under the impact of the highway are also compared. It has been established that in the area to the north-west of the highway the relief of the T1 polygonal peat plateau has stabilized. In the south-east section of T1, degradation has sharply increased after the construction of the highway. Due to the degradation of the polygons, the polygonal troughs expanded. In the background peat plateau T2, the rate of relief degradation is somewhat higher than in the northwestern portion of T1. Comparison of the main climatic parameters and degradation rates of the polygonal relief did not show any clear correlations. Probably, of greater importance are the regime of atmospheric precipitation, the redistribution of surface runoff and recurrence of flooding and drainage of the polygonal troughs, determined by the rhythmic course of the relief degradation.Π’Ρ‹Ρ‚Π°ΠΈΠ²Π°Π½ΠΈΠ΅ полигонально-ΠΆΠΈΠ»ΡŒΠ½Ρ‹Ρ… льдов (ΠŸΠ–Π›) опрСдСляСт Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… торфяников. ΠœΠ°ΡΡΠΈΠ²Ρ‹ ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… торфяников ΠŸΡƒΡ€-Вазовского ΠΌΠ΅ΠΆΠ΄ΡƒΡ€Π΅Ρ‡ΡŒΡ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π² срСднСм 6,5 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅ΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ. ЦСлью исслСдования являСтся установлСниС краткосрочных Ρ‚Π΅ΠΌΠΏΠΎΠ² ΠΈ направлСнности измСнСния Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° торфяников ΠΏΠΎΠ΄ совмСстным дСйствиСм Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ СстСствСнных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², основанноС Π½Π° ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π΅ Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 2005–2022 Π³Π³. По спутниковым снимкам ΠΈ ΠΎΡ€Ρ‚ΠΎΡ„ΠΎΡ‚ΠΎΠΏΠ»Π°Π½Π°ΠΌ ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π΅Π½Ρ‹ морфологичСскиС элСмСнты торфяника ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π·Π° Ρ€Π°Π·Π½Ρ‹Π΅ Π³ΠΎΠ΄Ρ‹. ИсслСдования ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π° торфяникС, нСпосрСдствСнно ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΌ ΠΊ Π°Π²Ρ‚ΠΎΠ΄ΠΎΡ€ΠΎΠ³Π΅, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΏΠ»ΠΈΡ‚Π°ΠΌΠΈ (Π’1), ΠΈ Π½Π° Ρ„ΠΎΠ½ΠΎΠ²ΠΎΠΌ торфяникС Π½Π° ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² 1,5 ΠΊΠΌ ΠΎΡ‚ Π΄ΠΎΡ€ΠΎΠ³ΠΈ (Π’2). Для выявлСния СстСствСнных ΠΏΡ€ΠΈΡ‡ΠΈΠ½ измСнСния Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° торфяников рассмотрСно влияниС Π±Π°Π·ΠΎΠ²Ρ‹Ρ… климатичСских характСристик. УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π° участкС ΠΊ сСвСро-Π·Π°ΠΏΠ°Π΄Ρƒ ΠΎΡ‚ Π΄ΠΎΡ€ΠΎΠ³ΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ стабилизация полигонального торфяника Π’1. На юго-восточном участкС Π’1 дСградация послС ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π΄ΠΎΡ€ΠΎΠ³ΠΈ Ρ€Π΅Π·ΠΊΠΎ ΡƒΡΠΈΠ»ΠΈΠ»Π°ΡΡŒ. ΠŸΠΎΠ»ΠΈΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ°Π½Π°Π²Ρ‹ Ρ€Π°ΡΡˆΠΈΡ€ΡΠ»ΠΈΡΡŒ Π·Π° счСт Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½ΠΎΠ². На Ρ„ΠΎΠ½ΠΎΠ²ΠΎΠΌ торфяникС Π’2 ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ повСрхности нСсколько Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π½Π° сСвСро-Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΌ участкС Π’1. БопоставлСниС основных ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° ΠΈ скоростСй Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ полигонального Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° Π½Π΅ Π΄Π°Π»ΠΎ явных зависимостСй. ВСроятно, большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΠΆΠΈΠΌ атмосфСрных осадков, пСрСраспрСдСлСниС повСрхностного стока ΠΈ смСна Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² затоплСния ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Π½Π°Π² ΠΈ ΠΈΡ… дрСнирования, опрСдСляСмого Ρ€ΠΈΡ‚ΠΌΠΈΡ‡Π½Ρ‹ΠΌ Ρ…ΠΎΠ΄ΠΎΠΌ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π°

    Assessment of spring floods and surface water extent over the Yamalo-Nenets autonomous district

    No full text
    Remote sensing of Arctic water bodies is an essential method for monitoring the dynamics of frozen ground. Thaw lake change provides insight into the state of permafrost. In the vast Arctic and sub-Arctic areas capturing changes in lake extent is assisted by satellite data. In particular, active microwave sensors can be used in a straightforward manner for water body classifications.This study uses the pan-Siberian datasets that are provided under the ESA STSE-ALANIS methane project. Surface water classifications in 10-day intervals have been produced using Envisat ASAR (Advanced Synthetic Aperture Radar) operating in wide swath mode. The high temporal frequency of these data allows an investigation of surface hydrology on an intra-annual basis.The current study applies a post-processing algorithm to the ALANIS products in order to investigate changes in surface inundation across the Yamalo-Nenets Autonomous District over the summer period of 2007. Multiple areas are found to exhibit changes in surface inundation. Strong seasonal variations occur in areas where previous investigations determined disappearing lakes. Spring floods associated with the depletion of snow-cover and melt waters as well as floodplain dynamics can be identified. On the Yamal peninsula, these changes occur most dominantly in the west; an area subject to anthropogenic land-use change. Changes in water body extent for each hot spot of seasonal variations are quantified and discussed.European Space Agency (ESA) Support to Science Element (STSE) programme (ESRIN)the European Union FP7-ENVAustrian Science Fund (FWF

    Tabular ground ice origin: cryolithological and isotope-geochemical study

    Get PDF
    An integrated cryolithological-isotope-geochemical study was undertaken at five sites in the Arctic within the framework of a three-year INTAS project. The conclusion based on geochemical analyses is that at the Asian westernmost Yugorsky to the easternmost Chukotka, marine sedimentation changed to subaerial followed by permafrost and massive ice formation due to the regression of the polar basin. Burial of the surface ice was possible, mainly in the mountainous areas of the Arctic coasts, i.e. the Urals and Chukotka

    Tabular ground ice mapping technique on the central Yamal

    No full text
    Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… бурСния ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² составлСна ΠΊΠ°Ρ€Ρ‚Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ залСгания ΠΊΡ€ΠΎΠ²Π»ΠΈ пластового льда. ΠšΠ°Ρ€Ρ‚Π° базируСтся Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ схСмы Π»Π°Π½Π΄ΡˆΠ°Ρ„Ρ‚Π½Ρ‹Ρ… ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ пластовыС Π»ΡŒΠ΄Ρ‹ Π·Π°Π»Π΅Π³Π°ΡŽΡ‚ Π±Π»ΠΈΠΆΠ΅ ΠΊ повСрхности Π½Π° останцах морских Ρ€Π°Π²Π½ΠΈΠ½, Π° Π³Π»ΡƒΠ±ΠΆΠ΅ Π½Π° участках, ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… тСрмокарстом.The Map of tabular ground ice depth was compiled as a result of the analysis of borehole and published data. The Map is based on a landscape featuresindicators method. It is established that tabular ground ice occurs closer to the surface within outliers of marine plains, and deeper at the lowered surfaces subjected to thermokarst
    • …
    corecore