1,096 research outputs found

    Collective generation of quantum states of light by entangled atoms

    Get PDF
    We present a theoretical framework to describe the collective emission of light by entangled atomic states. Our theory applies to the low excitation regime, where most of the atoms are initially in the ground state, and relies on a bosonic description of the atomic excitations. In this way, the problem of light emission by an ensemble of atoms can be solved exactly, including dipole-dipole interactions and multiple light scattering. Explicit expressions for the emitted photonic states are obtained in several situations, such as those of atoms in regular lattices and atomic vapors. We determine the directionality of the photonic beam, the purity of the photonic state, and the renormalization of the emission rates. We also show how to observe collective phenomena with ultracold atoms in optical lattices, and how to use these ideas to generate photonic states that are useful in the context of quantum information.Comment: 15 pages, 10 figure

    Complete methods set for scalable ion trap quantum information processing

    Full text link
    Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.Comment: 9 pages, 4 figures. Accepted to Science, and thus subject to a press embarg

    Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions

    Full text link
    We show how to create quantum gates of arbitrary speed between trapped ions, using a laser walking wave, with complete insensitivity to drift of the optical phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse sequences that satisfy the requirements and are easy to produce in the laboratory.Comment: 11 pages, 3 figure

    Simplified quantum logic with trapped ions

    Full text link
    We describe a simplified scheme for quantum logic with a collection of laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller, we show how the fundamental controlled-NOT gate between a collective mode of ion motion and the internal states of a single ion can be reduced to a single laser pulse, and the need for a third auxiliary internal electronic state can be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid Communication
    • …
    corecore