1,096 research outputs found
Collective generation of quantum states of light by entangled atoms
We present a theoretical framework to describe the collective emission of
light by entangled atomic states. Our theory applies to the low excitation
regime, where most of the atoms are initially in the ground state, and relies
on a bosonic description of the atomic excitations. In this way, the problem of
light emission by an ensemble of atoms can be solved exactly, including
dipole-dipole interactions and multiple light scattering. Explicit expressions
for the emitted photonic states are obtained in several situations, such as
those of atoms in regular lattices and atomic vapors. We determine the
directionality of the photonic beam, the purity of the photonic state, and the
renormalization of the emission rates. We also show how to observe collective
phenomena with ultracold atoms in optical lattices, and how to use these ideas
to generate photonic states that are useful in the context of quantum
information.Comment: 15 pages, 10 figure
Complete methods set for scalable ion trap quantum information processing
Large-scale quantum information processors must be able to transport and
maintain quantum information, and repeatedly perform logical operations. Here
we demonstrate a combination of all the fundamental elements required to
perform scalable quantum computing using qubits stored in the internal states
of trapped atomic ions. We quantify the repeatability of a multi-qubit
operation, observing no loss of performance despite qubit transport over
macroscopic distances. Key to these results is the use of different pairs of
beryllium ion hyperfine states for robust qubit storage, readout and gates, and
simultaneous trapping of magnesium re-cooling ions along with the qubit ions.Comment: 9 pages, 4 figures. Accepted to Science, and thus subject to a press
embarg
Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions
We show how to create quantum gates of arbitrary speed between trapped ions,
using a laser walking wave, with complete insensitivity to drift of the optical
phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse
sequences that satisfy the requirements and are easy to produce in the
laboratory.Comment: 11 pages, 3 figure
Simplified quantum logic with trapped ions
We describe a simplified scheme for quantum logic with a collection of
laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller,
we show how the fundamental controlled-NOT gate between a collective mode of
ion motion and the internal states of a single ion can be reduced to a single
laser pulse, and the need for a third auxiliary internal electronic state can
be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid
Communication
- …