277 research outputs found

    A Theory of Complex Adaptive Learning Based on an Intelligent Trading Probability Wave Equation

    Full text link
    Complex adaptive learning is intelligent and crucial in living and inanimate complex systems. A complex system comprises many interacting individuals or units, shows hidden patterns as they interact, and widely occurs in almost every traditional discipline, from natural to social sciences. A recent study has demonstrated a so-called architected material capable of learning. It stimulates scientists to explore the mechanism of complex systems formulation. However, it is very challenging. Here the authors attempt to extract a universal rule or a law of complex adaptive learning subject to local dynamic equilibrium in complex systems from a trading volume-price probability wave equation and apply it to complex quantum systems as its application. It proves particles capable of intelligence-like properties in interactive coherence if the momentum force exerted on the complex quantum systems is non-localized. It is the cumulative probability of the moving particles observed in a time interval. Thus, it assumes that particles in complex quantum systems have a complex adaptive learning- or intelligence-like property in a reinforced coordinate, governed by the exact complex adaptive learning mechanism as that of traders in the complexity of the financial markets. With this assumption, the authors propose an innovative interpretation of entanglement in quantum mechanics. It concludes that quantum entanglement is not a state of the superposition of coherent states as the mainstream Copenhagen school of thought maintains. It is a coherent state in the interaction between two opposite, complementary, and variable forces. The authors look forward to the experimental results to examine its validity and further improve the theory until it is perfect, suggesting industrial production of entanglement resources in new technical routes availableComment: 22 pages in total (double spaces and including a title page and a popular summary), 2 figures, and 20 reference

    Vibration characteristics of the impeller at multi-conditions in mixed-flow pump under the action of fluid-structure interaction

    Get PDF
    In this study, the flow field and impeller structure response in the mixed-flow pump are cooperative solved based on the bidirectional synchronization solving method, to study the vibration characteristics of the mixed-flow pump impeller rotor under the fluid-structure interaction. The pressure distributions of blade surface in the mixed-flow pump under different flow rate conditions were compared, and the deformation, equivalent stress distribution and natural vibration frequency of impeller blade under static force load were studied. Meanwhile, the deformation of impeller blade and coupling stress distribution was analyzed based on bidirectional fluid-structure interaction. The results show that the deformation of impeller blade increases from hub to rim, and the maximum deformation occurs at the rim of the blade. The stress distribution of impeller blade in the circumferential direction is symmetrical, and the maximum equivalent stress occurs at the blade outlet edge near the hub. The maximum deformation position and the stress concentration location are basically consistent before and after coupling calculation, but the maximum deformation value increases and the maximum equivalent stress value decreases under the fluid-structure interaction. The influence of water pressure on the strength and frequency of vibration is very limited. With the increase of flow rate, the maximum equivalent stress of impeller decreases and the total deformation increases gradually. The results of this research provide reference basis for the structure design and reliability analysis of the mixed-flow pump

    The particle surface of spinning test particles

    Full text link
    In this work, inspired by the definition of the photon surface given by Claudel, Virbhadra, and Ellis, we give an alternative quasi-local definition to study the circular orbits of single-pole particles. This definition does not only apply to photons but also to massive point particles. For the case of photons in spherically symmetric spacetime, it will give a photon surface equivalent to the result of Claudel, Virbhadra, and Ellis. Meanwhile, in general static and stationary spacetime, this definition can be regarded as a quasi-local form of the effective potential method. However, unlike the effective potential method which can not define the effective potential in dynamical spacetime, this definition can be applied to dynamical spacetime. Further, we generalize this definition directly to the case of pole-dipole particles. In static spherical symmetry spacetime, we verify the correctness of this generalization by comparing the results obtained by the effective potential method.Comment: 12pages, no figures; accepted by The European Physical Journal C; the title has been revies

    The early variation of left ventricular twisting function in patients with lymphoma received anthracycline therapy assessed by three-dimensional speckle tracking echocardiography

    Get PDF
    Background: Anthracycline-induced cardiotoxicity remains a significant and unresolved issue in patients receiving chemotherapy. The aim of this study was to evaluate left ventricular (LV) twisting function by three-dimensional speckle tracking echocardiography (3D-STE) in patients with lymphoma after anthracycline therapy. Methods: One hundred and one patients with newly diagnosed diffuse large B-cell lymphoma who had planned to receive anthracycline chemotherapy were enrolled. LV apical rotation, basal rotation, twist, torsion, time to peak apical rotation and time to peak basal rotation were measured by 3D-STE at baseline, after the completion of two cycles and four cycles of the regimen, respectively. Apical–basal rotation delay was calculated as the difference between time to basal and time to apical rotation. Results: The results showed that LV apical rotation, basal rotation, twist and torsion declined progressively during the whole procedure (baseline vs. two and four cycles of the regimen, apical rotation: 12.5 ± ± 4.5° vs. 8.8 ± 3.6° vs. 6.0 ± 3.2°; basal rotation: –7.7 ± 3.0° vs. –5.9 ± 2.6° vs. –4.4 ± 2.5°; twist: 20.0 ± 6.4° vs. 14.5 ± 5.1° vs. 9.8 ± 4.5°; torsion: 2.9 ± 0.9°/cm vs. 2.1 ± 0.9°/cm vs. 1.4 ± 0.7°/cm; all p < 0.01). Furthermore, apical-basal rotation delay increased significantly after two cycles as well as after four cycles of the regimen (38.3 ± 67.9 ms vs. 66.7 ± 73.9 ms vs. 92.6 ± 96.9 ms; p < 0.01). Conclusions: LV twisting function deteriorated in the early stage of anthracycline therapy in patients with lymphoma, which could be detected by 3D-STE sensitively.

    Self-healing characteristics of fracture in sealing materials based on self-healing effect

    Get PDF
    Cement-based materials are the most commonly used grouting and sealing materials in underground coal mines, but due to the effects of stress perturbation as well as water loss and shrinkage of cementitious materials, the traditional cementitious materials are prone to regeneration cracks, which leads to the reduction of gas extraction rate in the boreholes. In order to reduce the influence of regenerated fissures on the gas extraction effect, a self-repairing cement sealing material is developed, which can realize the self-healing of fissures when the fissures are generated again at the grouting location. Firstly, the self-healing performance of self-healing cement under air conditions was studied through the fissure self-healing experiment, and a high-magnification measuring microscope was used to record the change rule of the fissure width over time. It was found that the self-healing cement was able to repair the fissure with the maximum width of 0.46 mm in 4 d under the natural air conditions. A large amount of white minerals were generated at the fissure, and the volume of repaired material still increased significantly in 14 d. After scraping off the repair products, white minerals were still generated. In order to further study the generation mechanism of the self-repair products, the microscopic morphology and microelement distribution of the two kinds of cements hydrated for 7 and 21 d were comparatively analyzed by SEM-EDS, and the physical phase information of the two kinds of cements was comparatively analyzed by XRD and Raman spectroscopy. The SEM-EDS results showed that, for the traditional cement, the needle-like and flocculent materials were cross-linked with each other and the overall structure was dense, whereas a large number of porous materials were distributed in the self-healing cement and the structure was relatively loose. Compared with the traditional cement, the mass fractions of four elements, C, Na, Al and Si, in the hydration products of the self-repairing cement were significantly higher. A large number of tightly arranged long strips are distributed on the surface of the fissure repair products, and the main elemental compositions are C, O, Na, and Ca. The XRD results showed that more diffraction peaks of unhydrated tricalcium silicate appeared in the self-healing cement compared with the traditional cement, and the hydration products of the traditional cement were mainly calcium hydroxide and calcium alumina for the same hydration time, while aluminosilicate minerals such as sodium feldspar and zeolite appeared in the self-healing cement. The fracture restorations consisted of various silicate minerals such as zeolite, calcium chalcocite and wollastonite as well as calcium carbonate, of which calcium carbonate had the highest number of diffraction peaks. The Raman spectral results showed that compared with the traditional cement, the self-healing cement had obvious Raman spectral peaks at 2860−2960 cm−1. At 7 d of hydration, the traditional cement Raman peaks were generally sharp, while the self-healing cement Raman peaks were significantly broader. More Raman peaks of high-intensity calcium hydroxide appeared in the traditional cement, while more Raman peaks of C—O vibration in \begin{document}CO32− {\rm{CO}}^{2-}_{3} \end{document} appeared in the self-healing cement with larger peak area, which shows that the self-healing cement is more likely to react with CO2 in air to carbonize. At 21 d of hydration, the Raman peaks of both cements were sharp, and the main phases were hydrated calcium silicate and calcium hydroxide, while the self-healing cement also included a large amount of unhydrated tricalcium silicate. Finally, the effects of secondary hydration and carbonation on fracture self-healing were analyzed, and the equations for the generation of fracture repair products were deduced combining the experimental results
    • …
    corecore