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Abstract
Background: Anthracycline-induced cardiotoxicity remains a significant and unresolved issue in 
patients receiving chemotherapy. The aim of this study was to evaluate left ventricular (LV) twisting 
function by three-dimensional speckle tracking echocardiography (3D-STE) in patients with lymphoma 
after anthracycline therapy. 
Methods: One hundred and one patients with newly diagnosed diffuse large B-cell lymphoma who 
had planned to receive anthracycline chemotherapy were enrolled. LV apical rotation, basal rotation, 
twist, torsion, time to peak apical rotation and time to peak basal rotation were measured by 3D-STE 
at baseline, after the completion of two cycles and four cycles of the regimen, respectively. Apical–basal 
rotation delay was calculated as the difference between time to basal and time to apical rotation. 
Results: The results showed that LV apical rotation, basal rotation, twist and torsion declined progres-
sively during the whole procedure (baseline vs. two and four cycles of the regimen, apical rotation: 12.5 ± 
± 4.5° vs. 8.8 ± 3.6° vs. 6.0 ± 3.2°; basal rotation: –7.7 ± 3.0° vs. –5.9 ± 2.6° vs. –4.4 ± 2.5°; twist: 
20.0 ± 6.4° vs. 14.5 ± 5.1° vs. 9.8 ± 4.5°; torsion: 2.9 ± 0.9°/cm vs. 2.1 ± 0.9°/cm vs. 1.4 ± 0.7°/cm; 
all p < 0.01). Furthermore, apical-basal rotation delay increased significantly after two cycles as well 
as after four cycles of the regimen (38.3 ± 67.9 ms vs. 66.7 ± 73.9 ms vs. 92.6 ± 96.9 ms; p < 0.01). 
Conclusions: LV twisting function deteriorated in the early stage of anthracycline therapy in patients 
with lymphoma, which could be detected by 3D-STE sensitively. (Cardiol J 2017; 24, 5: 484–494)
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Introduction

At present, anthracycline continues to be 
a cornerstone in the treatment of lymphoma, al-
though the established risk of cardiac side effects 
may limit its use due to concerns about patient 
prognosis [1]. Previous studies have suggested 
that anthracycline-induced cardiotoxicity had 
emerged as the leading cause of noncancerous 
morbidity and mortality in patients exposed to 
anthracycline therapy [2, 3]. Left ventricular (LV) 
dysfunction is the most common and serious side 
effect of cancer treatment. Several studies have 
reported LV twisting behavior was sensitive to 
detect abnormalities of LV function in various 
conditions of cardiovascular diseases (CVD) [4–8]. 
LV twisting is an important deformation for cardiac 
motion in a three-dimensional space (3D), however, 
accurate quantification of LV twisting function 
remains challenging. Although cardiac magnetic 
resonance (CMR) imaging is the gold standard to 
measure myocardial mechanics in the setting of  
a wide variety of myocardial disease processes, it is 
constrained by its availability and cost as a first-line 
technique for serial evaluation of LV dysfunction in 
clinical practice. Recently, introduced 3D speckle 
tracking echocardiography (3D-STE) has proved 
to be feasible and comparable to CMR imaging in 
the assessment of LV rotation function [9]. Thus, 
the aim of this study was to examine LV twisting 
by 3D-STE in patients with lymphoma exposed to 
anthracycline therapy.

Methods

Study subjects 
A total of 101 patients with newly diagnosed 

and histopathologically confirmed diffuse large 
B-cell lymphoma between December 2012 and 
August 2015 at Fudan University Shanghai Cancer 
Center were enrolled prospectively and received 
anthracycline-embedded chemotherapy. The mean 
age of these patients was 49 years, with a range 
of 20–78 years. All patients were treated with 
4 cycles of R-CHOP (cyclophosphamide 750 mg/m2, 
vincristine 1.4 mg/m2 up to a maximum dose of 
2 mg/m2, epirubicin 50 mg/m2 on day 1, prednisone 
100 mg on days 1–5, and rituximab 375 mg/m2). 
Patients were restaged every 2 cycles, and those 
with disease progression were withdrawn from 
the treatment of R-CHOP. None of the patients re-
ceived other cardiotoxic agents, radiation therapy, 
or cardiac protective protocols during the entire 
study. Patients’ age < 18 years, viral myocarditis, 

severe hypertension, life expectancy ≤ 12 weeks, 
serious arrhythmia, renal or hepatic dysfunction, 
respiratory failure, valvular heart disease, a previ-
ous history of heart failure and/or coronary artery 
disease were exclusion criteria for enrollment. All 
subjects provided informed consent for participa-
tion in this study and for the administration of 
anthracycline therapy. The local ethics committee 
approved the protocol (The ethics approval number 
of Fudan University Shanghai Cancer Center is: 
1212117-6, The ethics approval number of Zhong-
shan Hospital of Fudan University is: 2011–117).

Echocardiographic imaging
All subjects underwent traditional two-dimen-

sional (2D) echocardiography and 3D-STE exami-
nation at baseline, 1 day after the completion of  
2 cycles and 4 cycles of the regimen. Images  
were obtained with a commercially available ultra-
sound machine (iE33, Philips Medical Systems, An-
dover WA, USA) equipped with S5-1 (1 to 5 MHz) 
and X3-1 (1 to 3 MHz) transducer. Standard 2D and 
3D echocardiography were performed according 
to the recommendations of American Society of 
Echocardiography [10]. Five consecutive cardiac 
cycle for 2D images and 6 consecutive cardiac cy-
cle for 3D-STE images were acquired. The image 
parameters such as depth, sector size, angle and 
focus were optimized to achieve the frame rate 
with a range of 60–80 FPS (frames per second) for 
2D and 30–45 FPS for 3D-STE analysis. At least 
three apical 4-chamber 3D-STE images for each 
patient were digitally stored for offline analysis. 
Echocardiography technicians as well as off-line 
echo readers were blinded to the clinical data and 
biochemical results.

Diastolic function measurements
Pulsed-wave (PW) Doppler variables (mitral 

E and A diastolic waves, E wave deceleration time 
[DT], isovolumetric relaxation time [IVRT]) and 
tissue Doppler data imaging (TDI) (mitral annular 
diastolic E’ and A’ waves) were obtained according 
to standard guidelines [10].

Offline analysis of 3D-STE
TomTec 4D LV analysis (4.6.0.411, TomTec 

Imaging Systems GMBH, Germany) was used for 
3D-STE data analysis. It was performed by making 
two reference points at the middle of mitral valve 
annulus and the apex respectively in three long-
axis reference planes (apical 4-chamber, 2-chamber, 
and 3-chamber views) and orientating one refer-
ence point at the annulus aortic valve in short-axis 
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reference plane. LV end-diastolic volume (EDV), 
end-systolic volume (ESV), stroke volume, ejection 
fraction (EF), and global longitudinal strain (GLS) as 
well as LV mass were automatically calculated. As  
a marker of global LV dyssynchrony, the systolic dys-
synchrony index (SDI) was defined as the standard 
deviation of time taken to reach the minimal regional 
volume for each of the 16 segments as a percentage 
of the cardiac cycle. Rotation of LV is the wringing 
motion of the ventricle around its long axis. The 
base rotates in an overall clockwise direction and the 
apex rotates in a counterclockwise direction when 
viewed from apex to base. Basal and apical rotation 
was determined by software after analysis. LV twist 
was defined as the difference in rotation between 
base and apex. The LV torsion was calculated as 
twist divided by LV length which was the distance 
between the middle of mitral valve annulus and the 
apex. To evaluate synchronicity between basal and 
apical rotation, the interval from the beginning of the 
QRS complex on the electrocardiogram to peak basal 
rotation (time to peak basal rotation) and the interval 
from the beginning of the QRS complex on the elec-
trocardiogram to peak apical rotation (time to peak 
apical rotation) were obtained. Apical–basal rotation 
delay was calculated as the difference between time 
to basal and time to apical rotation. Manual correction 
was performed to optimize the endocardial border 
delineation in all patients.

Assays for serum biochemical markers 
Serial serum samples were also collected at 

baseline, 1 day after the second cycle of chemothe-
rapy and the fourth cycle of the regimen. Measure- 
ments of high-sensitivity cardiac troponin T (hs-cTnT)  
were accomplished by the hs-cTnT one-step 
electrochemiluminescence immunoassay (Roche 
cobase 411) as previously reported [11]. All 
pro-B-type-natriuretic peptide (pro-BNP) analy-
ses were performed using Elecsys pro-BNP II.  
Technologists recording the hs-cTnT and pro-BNP 
results were blinded to the participants who were 
responsible for clinical as well as echocardiographic 
data.

Inter-observer and intra-observer variability
Inter- and intra-observer reproducibility was 

assessed by calculating the difference between the 
values of 15 randomly selected patients measured 
by one observer twice and by a second observer.

Statistical analysis
Continuous variables were expressed as mean 

± standard deviation. The variables that were not 

normally distributed were logarithmically trans-
formed before the analysis. The comparison of 
variables within each group versus the baseline 
was performed with one-way analysis of variance 
(ANOVA) followed by Bonferroni’s test. Pear-
son’s correlation analysis was used to assess for 
relationships between LV twisting parameters 
and EF, GLS, and hs-cTnT. Data were analyzed 
using standard statistical software (SPSS ver-
sion 19.0; SPSS, Inc, Chicago, IL, USA). For 
all statistical evaluations of results, p values 
< 0.05 were considered significant. Inter- and 
intra-observer reproducibility of twist and tor-
sion were assessed using intraclass correlation 
coefficients (ICCs).

Results

Study population
A total of 160 patients were screened; 9 were 

excluded due to uncontrolled hypertension, coro-
nary artery disease and viral myocarditis during 
follow-up; 22 were excluded from the analysis 
because of poor image quality which could not be 
recognized by the workstation; 28 patients were 
lost to follow-up. The remaining 101 patients,  
60 (59%) males, ranging from 20 to 78 years (mean 
age 49.3 ± 12.2 years) were included in the sta-
tistical analysis. After 2 cycles of chemotherapy, 
the cumulative dose of epirubicin in patients 
was 100 mg/m2. After 4 cycles of chemotherapy, 
the patient’s cumulative dose of epirubicin was 
200 mg/m2, which was not high dose. The demo-
graphics and characteristics of patients are shown 
in Table 1.

Diastolic function assessments
Early diastolic transmitral flow velocity (E), 

late diastolic transmitral flow velocity (A), DT as 
well as IVRT did not have significant difference 
between the pre- and post-therapies as well (all  
p > 0.05). TDI measurements including early and 
late diastolic myocardial velocities (E’ and A’) also 
remained within the reference range in all patients 
(p > 0.05) (Table 2).

3D-STE 
Table 3 depicts various parameters obtained 

by 3D-STE. After 4 cycles of chemotherapy, LV 
stroke volume reduced from 44.7 ± 9.9 mL to 
40.0 ± 11.4 mL and EF decreased from 62.3 ± 
± 5.3% to 58.2 ± 6.2%, GLS dropped from –21.8 ± 
± 4.8% to –19.3 ± 2.9%, while EDV, ESV as well 
as LV mass showed no obvious alteration. 
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Table 1. Characteristics of lymphoma patients.

Variables Baseline Second cycle Forth cycle P

Number 101 101 101 –

Male [%] 60 (59%) 60 (59%) 60 (59%) –

Age [years] 49.3 ± 12.2 49.3 ± 12.2 49.3 ± 12.2 1.000

Height [cm] 167.1 ± 6.5 167.2 ± 11.5 166.8 ± 6.6 0.907

Mass [kg] 65.8 ± 1.8 65.4 ± 11.5 65.3 ± 12.0 0.948

BSA [m2] 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 0.966

HR [bpm] 78.6 ± 11.8 80.0 ± 11.5 82.7 ± 10.5 0.034*

SBP [mm Hg] 115.6 ± 8.5 115.6 ± 10.5 113.1 ± 9.4 0.104

DBP [mm Hg] 75.5 ± 7.6 74.8 ± 6.6 74.2 ± 7.3 0.447

*p < 0.05, compared between baselines and after the fourth cycle of therapy; BSA — body surface area; HR — heart rate; SBP — systolic 
blood pressure; DBP — diastolic blood pressure

Table 2. Diastolic functional assessment.

Variables Baseline Second cycle Fourth cycle P

E wave [cm/s] 71.51 ± 17.7 68.85 ± 16.30 66.64 ± 15.27 0.111

A wave [cm/s] 71.12 ± 13.54 68.51 ± 15.76 68.89 ± 15.24 0.459

DT [ms] 179.41 ± 31.61 183.71 ± 34.61 183.95 ± 34.25 0.557

IVRT [ms] 75.12 ± 10.83 72.45 ± 9.93 73.56 ± 10.97 0.199

E’ wave [cm/s] 12.06 ± 4.08 12.06 ± 4.08 12.28 ± 4.17 0.843

A’ wave [cm/s] 11.94 ± 3.27 12.02 ± 3.24 12.34 ± 3.11 0.642

DT — deceleration time; IVRT — isovolumic relaxation time

Table 3. Three-dimensional speckle tracking echocardiography measurements.

Variables Baseline Second cycle Fourth cycle P

End-diastolic volume [mL] 72.4 ± 15.8 72.5 ± 16.8 71.0 ± 17.9 0.761

End-systolic volume [mL] 27.5 ± 8.1 30.2 ± 9.1 29.9 ± 9.1 0.056

Stroke volume [mL] 44.7 ± 9.9 42.5 ± 10.0 40.0 ± 11.4 0.039*

Ejection fraction [%] 62.3 ± 5.3 60.0 ± 4.8 58.2 ± 6.2 0.000*

Mass [g] 116.1 ± 26.2 114.8 ± 27.9 112.6 ± 27.0 0.664

GLS (%) –21.8 ± 4.8 –20.7 ± 2.5 –19.3 ± 2.9 0.000

Apical rotation [°] 12.5 ± 4.5 8.8 ± 3.6 6.0 ± 3.2 0.000**

Basal rotation [°] –7.7 ± 3.0 –5.9 ± 2.6 –4.4 ± 2.5 0.000**

Twist [°] 20.0 ± 6.4 14.5 ± 5.1 9.8 ± 4.5 0.000**

Torsion [°/cm] 2.9 ± 0.9 2.1 ± 0.9 1.4 ± 0.7 0.000**

Time to peak apical rotation [ms] 304.2 ± 64.1 310.1 ± 93.8 285.5 ± 90.0 0.093

Time to peak basal rotation [ms] 320.9 ± 95.5 313.0 ± 89.5 338.4 ± 115.9 0.189

Time to twist [ms] 302.8 ± 59.2 311.4 ± 73.4 307.8 ± 82.4 0.696

Apical-basal rotation delay [ms] 38.3 ± 67.9 66.7 ± 73.9 92.6 ± 96.9 0.000**

SDI [%] 5.4 ± 1.6 5.6 ± 1.6 5.6 ± 1.6 0.779

*p < 0.05, compared between baselines and after the fourth cycle of therapy; **p < 0.01, compared between baselines and after the second 
cycle of therapy; GLS — global longitudinal strain; SDI — systolic dyssynchrony index
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In systole, the base rotates in an overall clock-
wise direction and the apex rotates in a counter-
clockwise direction when viewed from apex to base, 
LV twist in a counterclockwise direction viewed 
from the apex to base. As in the Table 2, LV api-
cal rotation, basal rotation, twist and torsion had 
significantly reduced after the second cycle of the 
regimen from 12.5 ± 4.5° to 8.8 ± 3.6°, –7.7 ± 3.0° to 
–5.9 ± 2.6°, 20.0 ± 6.4° to 14.5 ± 5.1°, 2.9 ± 0.9°/cm 
to 2.1 ± 0.9°/cm (all p < 0.01). Apical-basal rota-
tion delay was prolonged from 38.4 ± 67.9 ms to 
66.7 ± 73.9 ms simultaneously (p < 0.01). The trends 
of all these twisting variations above continued to af-
ter 4 cycles of the regimen (all p < 0.01) (Figs. 1, 2). 

While LV SDI, time to peak apical rotation, time to 
peak basal rotation and time to peak twist showed no 
significant degradation between the pre- and post-
therapies (all p > 0.05). LV twisting curves analyzed 
by 3D-STE in a lymphoma patient before chemo-
therapy are shown in the Figure 3 and Figure 4  
illustrating LV twisting decline curves in the same 
case of lymphoma after 2 cycles of treatment.

Serum biochemical markers 
Serum for hs-cTnT and pro-BNP assays were 

collected from all subjects. Compared with the 
baseline, hs-cTnT was elevated significantly from 
0.004 ng/mL (interquartile range: 0.003 ng/mL, 

Figure 1. The variation trend of apical and basal rotation, twist as well as torsion at baseline, after 2 cycles and 4 cycles 
of anthracycline therapy.

Figure 2. The difference of apical-basal rotation delay and systolic dyssynchrony index (SDI) during the entire therapy.
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0.006 ng/mL) to 0.007 ng/mL (interquartile range: 
0.004 ng/mL, 0.010 ng/mL) (p < 0.01) after 2 cy-
cles, and to 0.015 ng/mL (interquartile range: 0.011 
ng/mL, 0.021 ng/mL) after 4 cycles of R-CHOP 
(p < 0.01). However the mean value of pro-BNP 
showed no significant difference between the pre- 
and post-therapies (all p > 0.05).

Correlations between twisting measurements 
and LVEF, GLS, and hs-cTnT

The correlations between twisting parameters 
and LVEF, GLS and hs-cTnT are shown in the Table 4.  
Among these twisting parameters, torsion was 
most significantly correlated with LVEF (r = 0.424, 

p < 0.01), GLS (r = –0.463, p < 0.01) and hs-cTnT 
(r = 0.506, p < 0.01). 

Inter- and intra-observer variation
Inter-observer measurement showed an ICC 

= 0.864 for twist, 0.925 for torsion, intra-observer 
measurement showed an ICC = 0.850 for twist, 
0.915 for torsion, indicating satisfactory reproduc-
tivity of primary focus indicators (Fig. 5).

Discussion

Early detection of cardiac function abnormal-
ity is of paramount importance in patients after 

Figure 3. Example of left ventricular apical rotation, basal rotation, and twist in a lymphoma patient at baseline. Clock-
wise rotation as viewed from the apex was considered as negative and counterclockwise rotation as positive. The 
apex rotated counterclockwise, the base rotated clockwise, and the left ventricle twisted counterclockwise in systole.

Figure 4. Example of left ventricular apical rotation, basal rotation, and twist in the same lymphoma patient after  
2 cycles of anthracycline therapy. Apical rotation, basal rotation and left ventricular twist were significantly reduced, 
despite the same direction of apical rotation, basal rotation, and twist in the patient compared with baseline.
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anthracycline therapy [12–16]. Anthracycline-
induced cardiomyocytes cell death by apoptosis 
and myofilament degradation may lead to impaired 
myocardial deformation as well as systolic dys-
function [17]. Echocardiography is the common 
modality for cardiac function [18–20]. 3D-STE as 
a novel echocardiographic technique has allowed 
advances in comprehensive evaluation of cardiac 
mechanical movement among various clinical sce-

narios [21–24]. Furthermore, one of the particular 
advantages of 3D-STE is the improved accuracy 
of LV twisting measurements [25, 26]. This study 
showed feasibility and reproducibility of 3D-STE 
in assessment of early changes in LV twisting 
function in patients with lymphoma exposed to 
anthracycline.

To date, there are limited studies focusing on 
LV rotational function in patients associated with 

Figure 5. Bland-Altman analysis for inter-observer and intra-observer reliability for twist (A, B) and torsion (C, D); 
SD — standard deviation.

Table 4. Correlations between twisting measurements and left ventricular ejection fraction (LVEF), 
global longitudinal strain (GLS), and high-sensitivity cardiac troponin T (hs-cTnT).

Variables LVEF GLS hs-cTnT
p r p r p r

Apical rotation [°] 0.000 0.312* 0.000 –0.312* 0.000 0.347*

Basal rotation [°] 0.000 –0.297* 0.000 0.323* 0.000 0.364*

Twist [°] 0.000 0.352* 0.000 –0.362* 0.000 0.402*

Torsion [°/cm] 0.000 0.424* 0.000 –0.463* 0.000 0.506*

Apical-basal rotation delay [ms] 0.114 – 0.05 – 0.004 0.167*

*p < 0.01

490 www.cardiologyjournal.org

Cardiology Journal 2017, Vol. 24, No. 5



anthracycline therapy. Cheung et al. [27] reported 
peak LV torsion and systolic twisting velocity 
were significantly lower than controls in childhood 
cancer survivors. Similar findings were discovered 
by Yu et al. [28] which showed torsion reduced 
significantly in anthracycline-treated survivors of 
childhood cancers. In the study of Motoki et al. 
[29], remarkable deterioration in torsion, twisting 
rate were found in adult patients 1 month after 
chemotherapy, in the meantime, a significant nega-
tive correlation was observed between cumulative 
anthracycline doses and torsion. A larger cohort 
involving 74 adult patients revealed that LV apical 
rotation and twist deteriorated before LVEF de-
creased at 6 weeks after initiation of chemotherapy 
[30]. In contrast to the previous studies above, this 
study uses 3D-STE which detected LV twisting 
abnormality only after 2 cycles of anthracycline 
treatment. What’s more, at the same time, hs-cTnT 
elevated significantly when compared with baseline 
data. The findings of reduced twist, torsion, and 
other rotational function parameters in the present 
study agree with those reported previously. It was 
also found that apical-basal rotation delay prolonged 
significantly after the second cycle of regimen, 
revealing obvious dyssynchrony between apical 
rotation and basal rotation. 

Left ventricular twisting and recoil are the 
results of the dynamic interaction between epi-
cardial and endocardial fiber wound oppositely and 
that sub-endocardial fibers are right-hand oriented 
and sub-epicardial fibers are left-hand oriented 
[31]. Because LV rotation is directly related to 
myocardial fiber orientation, it might be sensitive 
in response to various CVD which are associated 
with myofibrillar degradation. Depending on the 
extent and severity of cardiomyocyte loss as well as 
myocardial fibrosis induced by anthracycline [32], 

twisting movement and myocardial deformation 
may be reduced. Previous studies further demon-
strated anthracycline-induced calpain-dependent 
titin proteolysis and necrosis in cardiomyocytes 
affected the fibers architecture and cardiac geom-
etry which were verified to alter the cardiac torsion 
pattern [33, 34].

In the existing research, few studies have 
suggested that LV twisting parameters increased 
in given specific pathological conditions. Increased 
apical rotation in concentric hypertrophy and en-
hanced basal rotation in hypertrophic cardiomyo-
pathy respectively were found in the study of Prinz 
et al. [35] and of Ahmed et al. [36], they found that 
LV torsion and twist were higher in hypertension 
patients. Pagourelias et al. [37] also reported that 

LV twist increased in cirrhosis patients by 2D 
speckle tracking echocardiography. In these cases, 
LV systolic function is maintained with preserved 
or increased LVEF. Increased LVEF and LV pump 
function could be attributed to enhanced LV rota-
tion movement [38, 39]. However, in anthracycline-
induced cardiomyopathy, both of the subendocardial 
and subepicardial helix of fibers were involved [40]. 
And, our study showed that LV rotational param-
eters reduced obviously after only 2 cycles of the 
therapy, and GLS and LVEF declined at the end of 
the therapy. This means that subclinical impair-
ment of LV systolic function has been caused in 
the early stage of anthracycline therapy. 

An encouraging finding of our investigation is 
that, reduced apical rotation, basal rotation, twist 
and torsion after 2 cycles of anthracycline treat-
ment were accompanied with significant increase 
in hs-cTnT levels with preserved GLS as well as 
LVEF. While GLS is controlled predominantly by 
sub-endocardial fibers and it has been considered 
as a good marker of LV subclinical dysfunction 
[41, 42]. And a relative percentage reduction of 
GLS of > 15% from baseline may suggest risk of 
cardiotoxicity during the expert consensus state-
ment [43]. In the present study, although 3D GLS 
of LV decreased at the end of the therapy, none of 
the patients reached the above stated standard. Of 
note, in drug-induced cardiac injury, both myocar-
dial layers are involved inevitably [40].Thus, LV 
rotation could provide comprehensive information 
for ventricular performance. Moreover, this study 
suggested LV twisting parameters were more sen-
sitive to GLS in monitoring cardiac changes after 
anthracycline therapy.

According to a recent expert consensus state-
ment, a decrease in the LVEF of > 10%, to a value 
below the lower limit of normal, is defined as cancer 
therapeutics-related cardiac dysfunction [43, 44]. 
While in this study, none of the patients developed 
clinical cardiotoxity as well as meeting the above 
standard. Tan et al. [45] reported LVEF decreased 
in a cohort of women with breast cancer at the end 
of treatment when compared with baseline (from 
64 ± 6% to 59 ± 8%). This result was similar to 
the present study, their patient EF did not de-
crease sufficiently to meet the diagnostic criteria 
by the recommended statement. Although these 
subjects were treated with not only anthracycline 
but also taxanes and trastuzumab. Clinical trials 
have revealed that the patients exposed to both 
anthracycline and trastuzumab were at greater risk 
for severe heart failure and reduction in LVEF than 
those treated with non-trastuzumab-based therapy 
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[46] and some of the cardiotoxicity may also be 
related to the taxane [47]. It appears therefore, to 
be quite difficult to achieve the guideline standard 
at an early stage after anthracycline therapy, de-
spite modest cardiac injury having been induced. 
A large study by Khan et al. [48], involving 1204 
patients, showed 10.2% (n = 123) patients oc-
curred cardiotoxicity which was defined as a reduc-
tion in LVEF ≥ 10% absolute points from baseline 
and LVEF < 55%. Meanwhile, another study with 
75 patients reported that 18.67% patients developed 
an asymptomatic reduction of the LVEF of ≥ 10% 
after epirubicin therapy [49]. The present results 
appeared to be discordant with these two studies, 
however, their patients had received anthracycline 
> 300 mg/m2 which were higher than our cumula-
tive dose. Meanwhile, it was believed that different 
patients, follow-up time and chemotherapy regimen 
may account for the various results, LVEF itself 
may be not efficient enough to identify subtle myo-
cardial systolic performance when compared with 
other novel echocardiographic indexes.

Cardiac biomarkers including natriuretic pep-
tides and troponins have been identified as useful 
tools for assessing cancer therapeutics-related car-
diac dysfunction [50–52]. However, conclusive data 
are needed to establish whether biomarkers reli-
ably predict clinically relevant late consequences of 
cancer treatment when the patients combined with 
other CVD [43]. The determination of the optimal 
timing and assay platform of natriuretic peptides 
and troponins assessment remains in question. In 
this study, measurement of pro-BNP and hs-cTnT 
in lymphoma patients whom were free of noncan-
cerous CVD for every two cycles of treatment 
was conducted. Pro-BNP presented no significant 
difference between the pre- and post-therapies, 
while hs-cTnT levels elevated markedly after the 
second cycle of R-CHOP that was inconsistent 
with twisting variations. Moreover, the correlation 
analysis results between hs-cTnT and twisting 
parameters indicated were satisfactory. The inte-
grated approach combining hs-cTnT and rotational 
parameters hence may provide incremental value 
in monitoring prior cardiac damage induced by 
anthracycline treatment.

Limitations of the study
Several limitations to this study warrant 

comments. Firstly, although this study enrolled  
a large cohort which included more than 100 cancer 
patients, it is a single center study and its repro-
duction in other centers or by multicenter studies 
could support its validity. Secondly, information 

was not provided on the prediction value of LV ro-
tational indexes in prognostication. Finally, it would 
have been ideal to add normal control group in this 
study. Patient parameters were analyzed only the 
by own control comparison.

Conclusions

Small changes in myocardial twisting after 
anthracycline-embedded chemotherapy can be 
revealed by using 3D-STE. LV twisting appears 
to be a promising measure for quantitative detec-
tion of subclinical systolic dysfunction induced by 
anthracycline.
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