56 research outputs found

    Role of the porous structure of the bioceramic scaffolds in bone tissue engineering

    Get PDF
    The porous structure of biomaterials plays a critical role in improving the efficiency of biomaterials in tissue engineering. Here we fabricate successfully porous bioceramics with accurately controlled pore parameters, and investigate the effect of pore parameters on the mechanical property, the cell seeding proliferation and the vascularization of the scaffolds. This study shows that the porosity play an important role on the mechanical property of the scaffolds, which is affected not only by the macropores size, but also by the interconnections of the scaffolds. Larger pores are beneficial for cell growth in scaffolds. In contrast, the interconnections do not affect cell growth much. The interconnections appear to limit the number of blood vessels penatrating through adjacent pores, and both the pores size and interconnections can determine the size of blood vessels. The results may be referenced on the selective design of porous structure of biomaterials to meet the specificity of biological application

    Exploiting wireless received signal strength indicators to detect evil-twin attacks in smart homes

    Get PDF
    Evil-twin is becoming a common attack in Smart Home environments where an attacker can set up a fake AP to compromise the security of the connected devices. To identify the fake APs, The current approaches of detecting Evil-twin attacks all rely on information such as SSIDs, the MAC address of the genuine AP or network traffic patterns. However, such information can be faked by the attacker, often leading to low detection rates and weak protection. This paper presents a novel evil-twin attack detection method based on the received signal strength indicator (RSSI). Our key insight is that the location of the genuine AP rarely moves in a home environment and as a result the RSSI of the genuine AP is relatively stable. Our approach considers the RSSI as a fingerprint of APs and uses the fingerprint of the genuine AP to identify fake ones. We provide two schemes to detect a fake AP in two different scenarios where the genuine AP can be located at either a single or multiple locations in the property, by exploiting the multipath effect of the WIFI signal. As a departure from prior work, our approach does not rely on any professional measurement devices. Experimental results show that our approach can successfully detect 90% of the fake APs, at the cost of an one-off, modest connection delay

    SEEAD:A Semantic-based Approach for Automatic Binary Code De-obfuscation

    Get PDF
    Increasingly sophisticated code obfuscation techniques are quickly adopted by malware developers to escape from malware detection and to thwart the reverse engineering effort of security analysts. State-of-the-art de-obfuscation approaches rely on dynamic analysis, but face the challenge of low code coverage as not all software execution paths and behavior will be exposed at specific profiling runs. As a result, these approaches often fail to discover hidden malicious patterns. This paper introduces SEEAD, a novel and generic semantic-based de-obfuscation system. When building SEEAD, we try to rely on as few assumptions about the structure of the obfuscation tool as possible, so that the system can keep pace with the fast evolving code obfuscation techniques. To increase the code coverage, SEEAD dynamically directs the target program to execute different paths across different runs. This dynamic profiling scheme is rife with taint and control dependence analysis to reduce the search overhead, and a carefully designed protection scheme to bring the program to an error free status should any error happens during dynamic profile runs. As a result, the increased code coverage enables us to uncover hidden malicious behaviors that are not detected by traditional dynamic analysis based de-obfuscation approaches. We evaluate SEEAD on a range of benign and malicious obfuscated programs. Our experimental results show that SEEAD is able to successfully recover the original logic from obfuscated binaries

    SEEAD:A Semantic-based Approach for Automatic Binary Code De-obfuscation

    Get PDF
    Increasingly sophisticated code obfuscation techniques are quickly adopted by malware developers to escape from malware detection and to thwart the reverse engineering effort of security analysts. State-of-the-art de-obfuscation approaches rely on dynamic analysis, but face the challenge of low code coverage as not all software execution paths and behavior will be exposed at specific profiling runs. As a result, these approaches often fail to discover hidden malicious patterns. This paper introduces SEEAD, a novel and generic semantic-based de-obfuscation system. When building SEEAD, we try to rely on as few assumptions about the structure of the obfuscation tool as possible, so that the system can keep pace with the fast evolving code obfuscation techniques. To increase the code coverage, SEEAD dynamically directs the target program to execute different paths across different runs. This dynamic profiling scheme is rife with taint and control dependence analysis to reduce the search overhead, and a carefully designed protection scheme to bring the program to an error free status should any error happens during dynamic profile runs. As a result, the increased code coverage enables us to uncover hidden malicious behaviors that are not detected by traditional dynamic analysis based de-obfuscation approaches. We evaluate SEEAD on a range of benign and malicious obfuscated programs. Our experimental results show that SEEAD is able to successfully recover the original logic from obfuscated binaries

    DRET:a system for detecting evil-twin attacks in smart homes

    Get PDF
    Evil-twin is one of most commonly attacks in the WIFI environments, with which an attacker can steal sensitive information by cloning a fake AP in Smart Homes. The current approaches of detecting Evil-twin AP uses some identities/fingerprints of legitimated APs to identify rouge APs. Prior work in the area uses information like SSIDs, MAC addresses, and network traffics to detect bogus APs. However, such information can be easily intimated by the attacker, leading to low detection rates. This paper introduces a novel Evil-Twin AP detection method based on received signal strength indicator (RSSI). Our approach exploits the fact that the AP location is relatively stable in Smart Homes, which is to great extent to meet the requirement of the detection factor not easy to imitate as previous refer. We employ two detection strategies: a single position detection and a multi-positioned detection methods. Our approach exploits the multipath effect of WIFI signals to translate the problem of attack detection into AP positioning detection. Compared to classical detection methods, our approach can perform detection without relying on professional devices. Experimental results show that the single position detection approach achieves 20 seconds’ reduction of delay time with an accuracy of 98%, whereas the multi-positioned detection approach achieves 90% correct

    Evaluating Brush Movements for Chinese Calligraphy:A Computer Vision Based Approach

    Get PDF
    Chinese calligraphy is a popular, highly esteemed art form in the Chinese cultural sphere and worldwide. Ink brushes are the traditional writing tool for Chinese calligraphy and the subtle nuances of brush movements have a great impact on the aesthetics of the written characters. However, mastering the brush movement is a challenging task for many calligraphy learners as it requires many years’ practice and expert supervision. This paper presents a novel approach to help Chinese calligraphy learners to quantify the quality of brush movements without expert involvement. Our approach extracts the brush trajectories from a video stream; it then compares them with example templates of reputed calligraphers to produce a score for the writing quality. We achieve this by first developing a novel neural network to extract the spatial and temporal movement features from the video stream. We then employ methods developed in the computer vision and signal processing domains to track the brush movement trajectory and calculate the score. We conducted extensive experiments and user studies to evaluate our approach. Experimental results show that our approach is highly accurate in identifying brush movements, yielding an average accuracy of 90%, and the generated score is within 3% of errors when compared to the one given by human experts

    I Seed Permanent Implantation as a Palliative Treatment for Stage III and IV Hypopharyngeal Carcinoma

    Get PDF
    Objectives. The aim of this study was to investigate the feasibility and safety of percutaneous 125I seed permanent implantation for advanced hypopharyngeal carcinoma from toxicity, tumor response, and short-term outcome. Methods. 125I seeds implant procedures were performed under computed tomography for 34 patients with advanced hypopharyngeal carcinoma. We observed the local control rate, overall survival, and acute or late toxicity rate. Results. In the 34 patients (stage III, n=6; stage IV, n=28), the sites of origin were pyriform sinus (n=29) and postcricoid area (n=5). All patients also received one to four cycles of chemotherapy after seed implantation. The post-plan showed that the actuarial D90 of 125I seeds ranged from 90 to 158 Gy (median, 127 Gy). The mean follow-up was 12.3 months (range, 3.4 to 43.2 months). The local control was 2.1–31.0 months with a median of 17.7 months (95% confidence interval [CI], 13.4 to 22.0 months). The 1-, 2-, and 3-year local controls were 65.3%, 28.6%, and 9.5% respectively. Twelve patients (35%) died of local recurrence, fourteen patients (41%) died of distant metastases, and three patients (9%) died of recurrence and metastases at the same time. Five patients (15%) still survived to follow-up. At the time of analysis, the median survival time was 12.5 months (95% CI, 9.5 to 15.4 months). The 1-, 2-, and 3-year overall survival rates were 55.2%, 20.3%, and 10.9%, respectively. Five patients (15%) experienced grade 3 toxic events and nine patients (26%) have experienced grade 2 toxic events. Conclusion. This review shows relatively low toxicity for interstitial 125I seed implantation in the patients with advanced stage hypopharyngeal cancer. The high local control results suggest that 125I seed brachytherapy implant as a salvage or palliative treatment for advanced hypopharyngeal carcinoma merit further investigation

    Exploring Users' Internal Influence from Reviews for Social Recommendation

    No full text
    • …
    corecore