93 research outputs found

    Formation of Granules with High Phosphorus Content to Realize Efficient Phosphorus Recovery from Waste Activated Sludge by Using Anaerobic Digestion Followed by Aerobic Granulation Technology

    Get PDF
    科学研究費助成事業 研究成果報告書:基盤研究(C)2015-2017課題番号 : 15K0059

    Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios

    Get PDF
    Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l−1. This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN > 100 mg l−1 and of chemical oxygen demand (COD)/TN ratio of 3.2–8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m3 m−2 d−1 for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m3 m−2 d−1 of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters

    Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor

    Get PDF
    Anaerobic digestion (AD) is an efficient biotechnology widely applied for energy and resource recovery from organic waste and wastewater treatment. The effluent from AD or fermentation liquor containing organic substances like volatile fatty acids (VFAs) and mineral nutrients (such as N and P), however, will trigger serious environmental issues if not properly dealt with. In this study two identical sequencing batch reactors (SBRs), namely Ra and Rp were used to cultivate aerobic granules for P recovery from synthetic fermentation liquor, respectively using acetate and propionate as additional carbon source. Larger and more stable granules were achieved in Ra with higher P removal capability (9.4 mg P/g-VSS·d) and higher anaerobic P release (6.9 mg P/g-VSS·h). In addition to much higher P content (78 mg P/g-SS), bioavailable P in Ra-granules increased to 45 mg P/g-SS, approximately 2-times those of seed sludge and Rp-granules. Microbial community analysis indicated that more GAOs were accumulated in Rp-granules

    Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge

    Get PDF
    Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH4–N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4–67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9–70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca5(PO4)3(OH)) and iron phosphate (Fe7(PO4)6) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days\u27 operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (31P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic granules, which could be helpful for developing P removal and recovery techniques through biological wastewater treatment

    Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue

    Get PDF
    In this study, orthogonal experimental design and response surface methodology were employed to optimize the fermentation conditions for crude polysaccharides (MPS) production from the strain Morchella esculenta (M. esculenta) by soybean curd residue (SCR). The MPS yield varied depending on the nutrition contents added in SCR and fermentation time, fermentation temperature and inoculum size by M. esculenta during solid-state fermentation. The optimal fermentation conditions achieved for MPS production 95.82 ± 1.37 mg/g were glucose 4%, (NH4)2SO4 1.5%, water 75% and MgSO4·7H2O 0.2%, fermentation temperature 22.6 °C, fermentation time 21 days and inoculum size 2.67%, respectively. Furthermore, purified polysaccharides (PMPS) exhibited a positive antioxidant activity. The results provide a reference for large-scale production of polysaccharides by M. esculenta using SCR in the medical and food industries

    From powder to cloth: Facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions

    Get PDF
    The deposition of powdered MOFs material onto other substrates is essential to avoid inconvenience during its practical applications. In this work, domestic silk fiber was utilized as the skeleton, for successful coating of dense luminescent MOF-76(Tb). Its surface functionality which consist of abundance of intrinsic carboxylic groups, smooth surface structure, and 80% of tensile strength were maintained after being immersed in different thermal solvents (water, ethanol, DMF @ 80 °C) for 24 h, revealing good solvent and thermal resistance. By using hydrothermal, microwave assisted, and layer-by-layer methods, different crystal morphologies (pillar-like, sedimentary-rock-like, and needle-like morphology) and varying degrees of surface coverage rate were obtained, as a result of different levels of anchoring promotion and crystal controlling effect. The MOFs coating can be confirmed by its XRD pattern and fluorescent property. More importantly, the quenching effect of the composite in a condition of Cu2+ was first reported with high selectivity, sensitivity (i.e. a linear detection concentration range of 10−3–10−5 M with a low detection limit up to 0.5 mg/L, KSV of 1192 M−1 at 293 K), and rapid response time (5 min), making the composite a good candidate for colorimetric and fluorescent detection of aquatic Cu2+. The quenching mechanism is proposed to associate with the interaction between Cu2+ and benzene-tricarboxylate (BTC) ligand, which resulted in the decrease of energy transfer efficiency. The selectivity over other common cations depends on the unsaturated electron configuration and the smaller ionic radius of Cu2+

    Fertilizer potential of liquid product from hydrothermal treatment of swine manure

    Get PDF
    Compared with composting, hydrothermal treatment (HTT) technology can dramatically shorten the duration for manure waste treatment. This study firstly investigated the effect of HTT on solubilization of N, P and organics from swine manure, and then evaluated the phytotoxicity of liquid product from hydrothermally treated manure by seed germination test. Results show that 98% of N in manure could be converted into soluble form after HTT at 200 °C for 60 min. Soluble P in hydrothermally treated manure (at 150 °C for 60 min) was 2.7 times that in raw manure. The germination indices (GI) were all greater than 100% when the liquid product (from HTT at 150 °C for 60 min) or its diluted samples being used. Results from this study suggest that HTT could be a promising technology for producing safe and value-added liquid fertilizers from swine manure

    Effects of Lactobacillus plantarum on the Fermentation Profile and Microbiological Composition of Wheat Fermented Silage Under the Freezing and Thawing Low Temperatures

    Get PDF
    The corruption and/or poor quality of silages caused by low temperature and freeze-thaw conditions makes it imperative to identify effective starters and low temperature silage fermentation technology that can assist the animal feed industry and improve livestock productivity. The effect of L. plantarum QZ227 on the wheat silage quality was evaluated under conditions at constant low temperatures followed by repeated freezing and thawing at low temperatures. QZ227 became the predominant strain in 10 days and underwent a more intensive lactic acid bacteria fermentation than CK. QZ227 accumulated more lactic acid, but lower pH and ammonia nitrogen in the fermentation. During the repeated freezing and thawing process, the accumulated lactic acid in the silage fermented by QZ227 remained relatively stable. Relative to CK, QZ227 reduced the abundance of fungal pathogens in silage at a constant 5°C, including Aspergillus, Sporidiobolaceae, Hypocreaceae, Pleosporales, Cutaneotrichosporon, Alternaria, and Cystobasidiomycetes. Under varying low temperature conditions from days 40 to days 60, QZ227 reduced the pathogenic abundance of fungi such as Pichia, Aspergillus, Agaricales, and Plectosphaerella. QZ227 also reduced the pathogenic abundance of Mucoromycota after the silage had been exposed to oxygen. In conclusion, QZ227 can be used as a silage additive in the fermentation process at both constant and variable low temperatures to ensure fast and vigorous fermentation because it promotes the rapid accumulation of lactic acid, and reduces pH values and aerobic corruption compared to the CK

    Enhanced bioconversion of hydrogen and carbon dioxide to methane using a micro-nano sparger system: mass balance and energy consumption

    Get PDF
    Simultaneous CO2 removal with renewable biofuel production can be achieved by methanogens through conversion of CO2 and H2 into CH4. However, the low gas–liquid mass transfer (kLa) of H2 limits the commercial application of this bioconversion. This study tested and compared the gas–liquid mass transfer of H2 by using two stirred tank reactors (STRs) equipped with a micro-nano sparger (MNS) and common micro sparger (CMS), respectively. MNS was found to display superiority to CMS in methane production with the maximum methane evolution rate (MER) of 171.40 mmol/LR/d and 136.10 mmol/LR/d, along with a specific biomass growth rate of 0.15 d−1 and 0.09 d−1, respectively. Energy analysis indicated that the energy-productivity ratio for MNS was higher than that for CMS. This work suggests that MNS can be used as an applicable resolution to the limited kLa of H2 and thus enhance the bioconversion of H2 and CO2 to CH4

    Effects of nanobubble water on the growth of Lactobacillus acidophilus 1028 and its lactic acid production

    Get PDF
    Nanobubble water (NBW) has been applied in various fields due to the unique properties of nanobubbles (NBs) including long-term stability, negative zeta potential and generation of free radicals. In this study, the performance of four kinds of NBW from different gases (air, N2, H2, and CO2) in addition to deionized water (DW) were investigated and compared in terms of the growth of the probiotic Lactobacillus acidophilus 1028. The NB density, size distribution, zeta potential, pH and dissolved oxygen (DO) of the NBW were firstly investigated. Results indicate that N2-NBW had the highest absolute value of zeta potential and NB density (−25.3 ± 5.43 mV and 5.73 ± 1.0 × 107 particles per mL, respectively), while the lowest was detected in CO2-NBW (−6.96 ± 2.36 mV and 3.39 ± 1.73 × 107 particles per mL, respectively). With the exception of CO2-NBW, all the other types of NBW showed promotion effects on the growth of the strain at the lag and logarithmic phases. Among them, N2-NBW demonstrated the best performance, achieving the highest increase ratio of 51.1% after 6 h cultivation. The kinetic models (Logistic and Gompertz) indicate that the culture with N2-NBW had the shortest lag phase and the maximum specific growth rate when compared to the H2-NBW and DW groups under the same cultivation conditions. Preliminary analysis on the mechanisms suggested that these effects were related to the properties (zeta potential and density) of the NBs, which might affect the transport of substances. This study suggests that NBW has the potential for promoting the production efficiency of probiotics via fermentation
    corecore