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ABSTRACT 

This study applied a novel two-stage soil infiltration treatment (SIT) for reaching 

effective nitrogen removal from high-strength and low COD/TN ratio wastewaters. The 

wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) 

of 0.06 m3 m-2 d-1 for chemical oxygen demand (COD) removal and total phosphorus 

(TP) immobilization. Then the effluent from stage 1 was fed individually into four soil 

columns (stage 2) at 0.02 m3 m-2 d-1 of HLR with different proportions of raw 

wastewater as additional carbon source. Over the one-year field test, the stage 1 SIT 

removed >95% COD and >99% TP with influent COD of 861–1686 mg/L, NH4
+-N of 

168–292 mg/L, and TP of 10.3–20.5 mg/L. Efficient denitrification was achieved in 

stage 2 columns. Balanced nitrification and denitrification in the two-stage SIT revealed 

excellent TN removal (>90%) from high-strength and low COD/TN ratio wastewaters.  

Keywords: Soil infiltration treatment; nitrification; denitrification; ammonium 

wastewater; low COD/TN ratio 

 

1. Introduction 

High-strength ammonium nitrogen (NH4
+-N) wastewaters are produced by coking 
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plants, monosodium glutamate and chemical fertilizers industries, municipal landfills, 

and livestock farms, which need intensive polishing before safe disposal. Anaerobic 

treatment is practiced to deal with livestock wastewaters to convert organic 

carbonaceous matters into biogas and nitrogenous substances (such as proteins) into 

NH4
+. The digester effluent therefore has high levels of NH4

+-N and low chemical 

oxygen demand (COD). Biological nitrification-denitrification treatments can be 

adopted effectively when external carbon sources were present (Wong and Lee, 2011; 

Ge et al., 2012). 

Single-stage soil infiltration treatment (SIT), a cost-effective in situ treatment 

process, can sufficiently treat ammonium-containing wastewaters of total nitrogen 

(TN)<100 mg N/L (van Cuyk et al., 2001; van Cuyk and Siegrist, 2007; Kadam et al., 

2008; Murakami et al., 2008). When dealing with wastewater of TN>100 mg N/L, SIT 

failed to achieve effective nitrogen removal since quantities of nitrate nitrogen (NO3
--N) 

were left in the effluents (Ding et al., 2001; Lei et al., 2007; Liang and Liu, 2008). 

Restated, in general the denitrification activity in SIT is not sufficient to convert excess 

NO3
--N to N2. 

This study aims at testing the feasibility of achieving separated nitrification and 

denitrification stage in a novel two-stage SIT process to treat high-strength and low 

COD/TN wastewaters. The stage 1 SIT was used for nitrification, COD degradation and 

TP immobilization. The stage 2 SIT was applied for denitrification with different 

proportions of raw wastewater supplemented as additional carbon source. The practical 

limitations and effects of influencing operational parameters on the two-stage SIT 

performance were revealed. 

 

2. Materials and methods 
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2.1. Two-stage SIT testers and wastewaters 

The SIT testers comprised of soil column A for stage 1 and columns B1–B4 for 

stage 2 (Fig. S1 in Supplementary Materials). The SIT soil columns were made of 

polyvinyl chloride with total height of 110 cm and internal diameter of 15.3 cm. The 

yellow brown soil sampled from the farmland in Baimi Village, Kunshan County, 

Jiangsu Province, China was mixed thoroughly with predetermined fly ash and rice 

hulls (soil:fly ash:rice hull =7:2:1 by volume), and then packed into all columns. Table 

S1 in Supplementary Materials lists the physicochemical properties of packing soils. 

The packing layers were 80 cm high with 5 cm of gravel layer underneath and 2 cm of 

sand layer above. The soils in B1–B4 were repacked to reach dense packing (lower 

hydraulic conductivities as in Table S1) so air intrusion was low that benefited 

occurrence of denitrification reactions. 

Two high-strength NH4
+-N wastewaters were prepared. A synthetic wastewater was 

prepared that contained (per liter) about 1.4 g glucose, 0.8 g NH4Cl, and 0.09 g KH2PO4, 

which was characterized as pH 7.13±0.12, COD 1254.48±143.92 mg/L, NH4
+-N 

197.33±12.06 mg/L, TN 197.93±17.46 mg/L, TP 19.06±1.14 mg/L, respectively. A 

real wastewater sample was prepared by 5 times dilution of the effluent from an 

anaerobic fermentation tank of swine wastewater (in Baimi Village, Kunshan County, 

Jiangsu Province, China) according to the proposed field processes and irrigation 

condition, in which the anaerobic effluent was irrigated after 5 times dilution with river 

water and overflowed to a soil infiltration trench. The diluted effluent from the 

fermentation tank had the following characteristics: pH 6.65–8.20, COD 861–1686 

mg/L, NH4
+-N 168–292 mg/L, TN 182–294 mg/L, and TP 10.3–20.5 mg/L, giving a 

COD/TN ratio of 3.2–8.6. 

2.2. Experimental conditions 
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Since the hydraulic conductivities of column A and columns B1–B4 were different 

(Table S1 in Supplementary Materials) and based on our preliminary trials (data not 

shown), the hydraulic loading rates (HLRs) of stage 1 and stage 2 were set at 0.06 and 

0.02 m3 m-2 d-1, respectively. Wastewaters were fed at the top of column A and the 

effluent from the bottom of A was fed into B1–B4 at different mix proportions of raw 

wastewater. Restated, the volume ratios of effluent from A versus raw wastewater (Qi/qi, 

i=1,2,3,4) were fixed at 4:1, 3:2, 2:3, and 1:4 for the influents of B1, B2, B3, and B4, 

respectively (Fig. S1 in Supplementary Materials). 

At the start of the test, the SIT columns were fed with synthetic wastewater for 

about 7 months (Experiment I). Afterwards the feed was stopped for about one month 

and then shifted to diluted real wastewater at different mix ratios for about 4 months 

(Experiment II). The influent COD/TN for column B4 was always the highest among 

the four stage 2 columns. The wetting/drying ratios of all five columns (A and B1–B4) 

were kept at 1/3. Experiments were carried out with ambient temperature ranging 

4–27oC over the whole testing year. The average organic loading rates for column A and 

columns B1–B4 were 73.1, 7.1, 11.3, 15.6, and 20.2 g COD m-2 d-1, respectively. 

2.3. Sampling and determination 

Influent and effluent samples were collected and stored at 4oC and analyzed within 

24 h after sampling. Determinations of COD, NH4
+-N, NO2

--N, NO3
--N, TN, and TP 

were conducted based on Standard Methods (APHA, 1999). 

Soil samples were collected at upper (20cm), middle (50cm), and bottom (70cm) 

layers of the column. Each layer soil was collected by mixing one central sample with 

four surrounding ones. The soil samples were milled after air-dried and were analyzed 

within two weeks except for that of organic matter (OM). Soil OM was detected right 

after sampling by gravimetric method: first dried at 105±1oC and then burned off at 
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550±2oC. Soil pH was determined by a pH meter (HQ40d, Hach Co., USA) in the 

extract of soil sample:water (1:2.5, v/v) mixture after stirred for 30 min at 100 rpm. Soil 

TN and TP contents were measured according to Standard Methods (APHA, 1999) after 

sieving the samples through 0.15 mm mesh and digesting with sulphuric acid (Xu and 

Zheng, 1986). 

2.4. Data analysis 

In order to identify the dominant processes occurred in the two stages, nitrification 

and denitrification efficiencies in this study were estimated according to Equations (1) 

and (2), respectively. 

NOx-N gain (%)=100×{[NOX-N]e – [NOX-N]i}/[NH4-N]i          (1) 

TIN loss (%)=100 ×{[TIN]i – [TIN]e}/[TIN]i                (2) 

where [NH4
+-N], [NOx

--N], and [TIN] are the concentrations of NH4
+-N, 

NO2
--N+NO3

--N, and total inorganic nitrogen (the sum of NH4
+-N, NO2

--N, and NO3
--N) 

in liquid phase, respectively. The subscripts i and e denote influent and effluent, 

respectively. 

One-way analysis of variance (ANOVA) and F-test were performed to determine 

whether there was significant difference among the performances of the four soil 

columns at stage 2 or the two wastewater conditions. Significance was assumed if the 

p<0.05. 

 

3. Results and discussion 

3.1. COD removal and TP immobilization 

In Experiment I (synthetic wastewater as influent), the stage 1 SIT (column A) 

removed 95.4% COD and the stage 2 (columns B) removed 84.5–95.9% COD. In 

Experiment II, stage 1 and stage 2 removed 81.4% and 92.7–96.8% of influent COD, 
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respectively. No significant difference was found among the four stage 2 columns with 

respect to COD removal. 

The decrease in COD removal for the stage 1 in Experiment II may be partly 

contributed by complicated organic substances in the digested swine wastewater as 

influent. All the effluent CODs from the stage 2 (B1–B4) remained low (<50 mg/L) in 

either Experiment I or II, implying that two-stage SIT systems could also be effective 

for the adsorption/absorption and biodegradation of organic compounds. 

With feed TP concentrations of 10.3–20.5 mg/L, the effluent TPs from column A 

were averagely 0.14 mg/L and 1.43 mg/L in Experiments I and II, respectively. The 

effluent TPs from the stage 2 (B1–B4) were always <0.1 mg/L, showing that more than 

99% of TP were removed, with most of TP removed in stage 1.  

3.2. TN removal 

The stage 1 column (A) removed limited quantities of TN (averagely 32.0% in 

Experiment I and 34.8% in Experiment II), a consequence of the applied high HLR and 

high organic loading rates (Fig. 1). Restated, the single-stage SIT could not effectively 

remove nitrogen from wastewaters, correlating with the reported literature. Conversely, 

the stage 2 of SIT removed TN during the first 5 months of Experiment I. 

Correspondingly, the average TN removals were 93.0%, 93.2%, 93.1%, and 98.2% for 

B1, B2, B3, and B4, respectively. Afterwards, the TN removals in stage 2 decreased 

over time, reaching 54.8%, 52.7%, 58.3%, and 76.3%, respectively, at the end of 

Experiment I. 

Experiment II was started up after one-month drying period, during which 

excessive nitrogen was thought to be removed and the soil matrix recovered its nitrogen 

removal capability. In Experiment II, TN concentrations in the stage 2 effluents 

fluctuated with time (Fig. 1). The average TN removals were 41.7%, 38.9%, 54.7%, and 
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70.5% for B1, B2, B3, and B4, respectively. 

TN removal loading, the quantities of TN removed per unit column surface area per 

day, for B1–B4 were averagely 2.61, 2.79, 3.03, and 3.56 g NR m-2 d-1 in Experiment I 

and were decreased to 1.60, 1.49, 2.29, and 3.26 g NR m-2 d-1 in Experiment II (Fig. 2). 

B4 had the lowest reduction in TN removal loading, suggesting that high COD/TN ratio 

correlated with stable operation in stage 2 of the tested SITs. 

3.3. Inorganic nitrogen 

Figure S2 (Supplementary Materials) illustrates the average content variations of 

inorganic nitrogen including NH4
+-N, NO2

--N, and NO3
--N in the influents and effluents 

for the five SIT columns during the two experiments (I and II). 

All the SIT columns exhibited excellent nitrification capabilities, and the NH4
+-N 

concentration averagely decreased by 94.7% in stage 1 and 99.2–99.9% in stage 2. 

Although NH4
+-N accounted for >98% and 70% of the influent TN in Experiment I and 

II, respectively, NO3
--N presented 87.7–99.8% of the total inorganic nitrogen (TIN) in 

the effluent. Correspondingly, NH4
+-N concentrations were very low in the effluents 

(0.16–1.21% of TIN) except for column A in Experiment II (6.88% in the effluent TIN). 

This observation is attributed to the occurrence of ammonification reactions of organic 

nitrogenous substances in the digested swine wastewater due to the reduction in organic 

nitrogen level from 65.7 mg N/L to 30.5 mg N/L after column A.  

Accumulation of NO2
--N signals deterioration of nitrification and denitrification 

processes in soils. In this study, however, with influent NO2
--N ranging between 

0.013–1.285 mg/L, the effluent NO2
--N concentrations were <0.05 mg/L regardless of 

the large temperature fluctuations encountered during the tests (Figs. 2 and S2).  

3.4. Separated nitrification and denitrification in two-stage SIT systems 

Biological nitrification/denitrification is regarded as the principal mechanism for 
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nitrogen removal in SIT systems (Zhang et al., 2005). When both nitrification and 

denitrification reactions occurred in a single soil column or trench, in which nitrification 

took place in the upper soil layers with sufficient oxygen supply while denitrification 

occurred in the lower ones where oxygen was almost depleted (Ding et al., 2001; van 

Cuyk et al., 2001; Lei et al., 2007; van Cuyk and Siegrist, 2007; Kadam et al., 2008; 

Liang and Liu, 2008; Murakami et al., 2008). Along the feed flow passage carboneous 

substances decrease in concentration, which may lead to insufficient carbon source 

needed for denitrification process at downstream regimes. In the present two-stage SIT 

systems nitrification and denitrification were separated in different confinements, and 

some additional carbon source (from raw wastewater) was supplemented to stage 2, thus 

sufficiently supporting the denitrification performance in stage 2. 

Based on Equations (1) and (2), the average nitrification and denitrification 

efficiencies suggested a “balanced” nitrification and denitrification in the present 

two-stage SIT systems in Experiment I (Table 1), with nitrification process dominated 

the stage 1 (column A) and denitrification process did the stage 2 (column B). 

Specifically, the stage 1 performed stably with average nitrification efficiencies at 

67.1–74.4% and denitrification efficiencies at 25.2–26.4%. Conversely, the efficiencies 

of the stage 2 were far less stable over time (Table 1 and Fig. 2). 

3.5. Effects of influent COD/TN and temperature on TN removal 

Carbon and nitrogen sources and temperature affect biological denitrification 

process when treating high-strength nitrate wastewater (Nair et al., 2007; Warneke et al., 

2011). Insufficient carbon source may limit denitrification in SIT. Figure 3 depicts the 

correlation between average influent COD/TN ratio and average TN removed load for 

all five columns. TN removal linearly correlated with influent COD/TN, with 

correlation coefficients (r) of 0.9713 for Experiment I and 0.9990 for Experiment II. At 
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>4 influent COD/TN, the TN removal load could be higher than 3 g NR m-2 d-1 (Fig. 3). 

Therefore, the supplementary carbon source (from raw wastewater) to stage 2 is 

effective to enhance denitrification in stage 2.  

The correlation coefficients between temperature and TN removal ranged 

0.802–0.860 for B1–B4 (p<0.05), implying that the temperature drop from 21 to 4 oC 

may deteriorate denitrification performance in stage 2 (Figs. 1 and 2). Low temperature 

was noted to have less impact on nitrification than on denitrification in SIT. Thus the 

decrease in denitrification efficiencies for stage 2 columns may be contributed by the 

drop of temperature during the tests, which probably resulted in unbalanced nitrification 

and denitrification in the two-stage SIT.  

3.6. Changes in soil properties in the two-stage SIT systems 

In stage 1, soil organic matter (OM) and TN contents increased with testing time, 

with difference noted among the four columns B (Fig. S3 in Supplementary 

Materials). The soil OM and TN contents decreased over time in Experiment I, likely a 

consequence of insufficient carbon source in the feeds (COD/TN=1.96-5.49) (Fig. 3). 

This finding correlates with that of Grischek et al. (1998) who treated river water using 

a sand and gravel aquifer. 

Alkalinity, required in nitrification and produced in denitrification, could be 

maintained relatively stable during a balanced nitrification and denitrification process. 

The soil pH in stage 1 decreased from initial 7.14 to 6.94 in Experiment I and then 

further to 6.42 after Experiment II. This pH decrease was attributable to the effective 

nitrification and inhibited denitrification in column A. The average soil pH in the stage 

2 increased significantly after Experiment I (pH 7.98–8.05, Fig. S3) due to effective 

denitrification. 
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4. Conclusions 

The present two-stage SIT systems achieved sufficient and stable removal rates of 

COD, TP, and TN for the studied high strength wastewaters. Separated and balanced 

nitrification and denitrification processes were built up with intermediate supply of raw 

wastewater as additional carbon source. Greater than 90% of TN removal and larger 

than 3 g NR m-2 d-1 of TN removal load were obtained for the tested SITs. The two-stage 

SIT showed superior stability and operational performance when dealing with the high 

strength and low COD/TN ratio wastewaters. 
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Table 1. Average nitrification and denitrification efficiencies for each SIT column 
during the experiments. 

Column A B1 B2 B3 B4 
Experiment I 

NOx-N gain (%) 74.4±0.2 -242.7±2.1 -78.9±1.5 -29.9±0.7 -13.0±0.1 
TIN loss (%) 25.2±0.2 87.7±1.8 85.2±1.5 86.9±2.1 94.0±2.4 

Experiment II 
NOx-N gain (%) 67.1±1.4 -4.3±0.2 43.6±1.1 29.2±0.2 24.8±0.5 
TIN loss (%) 26.4±0.5 31.7±0.4 28.3±0.3 47.7±1.1 61.9±1.2 
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Fig. 1. Variations of influent and effluent TN concentrations for the five SIT columns 

during Experiments I and II. 
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Fig. 2. Variations of average TN removed loads with temperature for the stage 2 
columns (B1–B4). 
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Fig. 3. Relationship between influent COD/TN ratio and average TN removed load for 

the five soil columns during Experiments I and II. 
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Table S1 Main properties of original soil matrix in the five columns. 

Column 

Main properties 
Organic 
matter 
(mg/g) 

TN 
 
(mg/g) 

TP 
 
(mg/g) 

C/Na 

 

 

Hydraulic 
conductivityb 
(cm/s) 

A 102.6±12.1 2.11±0.09 0.319±0.058 24.3±2.72 2.91×10-1 
B1 124.0±7.9 1.92±0.12 0.288±0.102 32.3±1.54 3.19×10-2 
B2 96.8±19.2 2.83±0.54 0.383±0.069 17.1±1.36 3.26×10-2 
B3 103.1±4.3 2.09±0.37 0.368±0.053 24.7±1.26 4.83×10-2 
B4 115.1±8.6 2.02±0.09 0.282±0.126 28.5±1.19 6.62×10-2 

aC/N ratio was calculated according to Brady and Weil (1999): soil carbon 
contained in soil equals to 50% of organic matter for most situations. 
bHydraulic conductivity was measured with the constant head method proposed by 
McWhorter and Sunada (1997). 
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Fig. S1. Flowchart of the two-stage SIT process. The feeds into B1, B2, B3, and B4 are 

fixed at Q1:q1=4:1, Q2:q2=3:2, Q3:q3=2:3, and Q4:q4=1:4, respectively. 
Q=Q1+Q2+Q3+Q4, q=q1+q2+q3+q4. 
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Fig. S2. Changes of inorganic nitrogen form in the influent and effluents for the five soil 
columns during Experiments I and II. 
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