51 research outputs found

    Photochemistry and magnetic resonance spectroscopy as probes of supramolecular structures and migration pathways of organic molecules and radicals adsorbed on zeolites

    Get PDF
    Magnetic resonance, surface area measurements and computational techniques have been integrated to elucidate the supramolecular photochemistry of two isomeric ketones adsorbed on two MFI zeolites (silicalite and ZSM-5) and to demonstrate that common factors proportional to the available external surface area operate to determine the measured parameters in each case

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis

    Nuclear magnetic resonance of hydrogen molecules trapped inside C70 fullerene cages

    No full text
    We present a solid-state NMR study of H2 molecules confined inside the cavity of C70 fullerene cages over a wide range of temperatures (300?K to 4?K). The proton NMR spectra are consistent with a model in which the dipole–dipole coupling between the ortho-H2 protons is averaged over the rotational/translational states of the confined quantum rotor, with an additional chemical shift anisotropy ?HCSA=10.1?ppm induced by the carbon cage. The magnitude of the chemical shift anisotropy is consistent with DFT estimates of the chemical shielding tensor field within the cage. The experimental NMR data indicate that the ground state of endohedral ortho-H2 in C70 is doubly degenerate and polarized transverse to the principal axis of the cage. The NMR spectra indicate significant magnetic alignment of the C70 long axes along the magnetic field, at temperatures below ~10?

    Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    Get PDF
    The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin di↵usion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages

    Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60

    Get PDF
    We report an inelastic neutron scattering (INS) study of H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules

    Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation

    Get PDF
    Inelastic neutron scattering (INS) has been employed to investigate the quantum dynamics of water molecules permanently entrapped inside the cages of C60 fullerene molecules. This study of the supramolecular complex, H2O@C60, provides the unique opportunity to study isolated water molecules in a highly symmetric environment. Free from strong interactions, the water molecule has a high degree of rotational freedom enabling its nuclear spin isomers, ortho-H2O and para-H2O to be separately identified and studied. The INS technique mediates transitions between the ortho and para spin isomers and using three INS spectrometers, the rotational levels of H2O have been investigated, correlating well with the known levels in gaseous water. The slow process of nuclear spin conversion between ortho-H2O and para-H2O is revealed in the time dependence of the INS peak intensities over periods of many hours. Of particular interest to this study is the observed splitting of the ground state of ortho-H2O, raising the three-fold degeneracy into two states with degeneracy 2 and 1 respectively. This is attributed to a symmetry-breaking interaction of the water environment
    • …
    corecore