1,820 research outputs found

    Revisiting the holographic dark energy in a non-flat universe: alternative model and cosmological parameter constraints

    Get PDF
    We propose an alternative model for the holographic dark energy in a non-flat universe. This new model differs from the previous one in that the IR length cutoff LL is taken to be exactly the event horizon size in a non-flat universe, which is more natural and theoretically/conceptually concordant with the model of holographic dark energy in a flat universe. We constrain the model using the recent observational data including the type Ia supernova data from SNLS3, the baryon acoustic oscillation data from 6dF, SDSS-DR7, BOSS-DR11, and WiggleZ, the cosmic microwave background data from Planck, and the Hubble constant measurement from HST. In particular, since some previous studies have shown that the color-luminosity parameter β\beta of supernovae is likely to vary during the cosmic evolution, we also consider such a case that β\beta in SNLS3 is time-varying in our data fitting. Compared to the constant β\beta case, the time-varying β\beta case reduces the value of χ2\chi^2 by about 35 and results in that β\beta deviates from a constant at about 5σ\sigma level, well consistent with the previous studies. For the parameter cc of the holographic dark energy, the constant β\beta fit gives c=0.65±0.05c=0.65\pm 0.05 and the time-varying β\beta fit yields c=0.72±0.06c=0.72\pm 0.06. In addition, an open universe is favored (at about 2σ\sigma) for the model by the current data.Comment: 8 pages, 4 figure

    Unextendible Maximally Entangled Bases in Cpd⊗Cqd\mathbb{C}^{pd}\otimes \mathbb{C}^{qd}

    Full text link
    The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in Cpd⊗Cqd\mathbb {C}^{pd}\otimes \mathbb {C}^{qd}(p≤qp\leq q) based on the constructions of UMEBs in Cd⊗Cd\mathbb {C}^{d}\otimes \mathbb {C}^{d} and in Cp⊗Cq\mathbb {C}^{p}\otimes \mathbb {C}^{q}, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48-member UMEBs in C6⊗C9\mathbb {C}^{6}\otimes \mathbb {C}^{9} have been constructed in detail

    Single-photon-triggered quantum chaos

    Get PDF
    We demonstrate how to manipulate quantum chaos with a single photon in a hybrid quantum device combining cavity QED and optomechanics. Specifically, we show that this system changes between integrable and chaotic relying on the photon-state of the injected field. This onset of chaos originates from the photon-dependent chaotic threshold of the qubit-field coupling induced by the optomechanical interaction. By deriving the Loschmidt Echo we observe clear differences in the sensitivity to perturbations in the regular versus chaotic regimes. We also present classical analog of this chaotic behavior, and find good correspondence between chaotic quantum dynamics and classical physics. Our work opens up a new route to achieve quantum manipulations, which are crucial elements in engineering new types of on-chip quantum devices and quantum information science.Comment: 11 pages, 4 figure

    A polybenzimidazole/graphite oxide based three layer membrane for intermediate temperature polymer electrolyte membrane fuel cells

    Get PDF
    A three layer membrane (TLM) of polybenzimidazole/graphite oxide/polybenzimidazole (PBI/GO/PBI) has been fabricated as an electrolyte for intermediate temperature polymer exchange membrane fuel cells (IT-PEMFCs). The membrane is prepared by encapsulating a GO layer with two single PBI membranes via a layer-by-layer procedure and subsequently imbibed with phosphoric acid (PA). The TLM exhibits a lower swelling ratio than that of the pristine PBI membrane at the same PA loading time. The mechanical strength of the TLM could reach 28.6 MPa at 150 °C, significantly higher than that of a PBI membrane (12.2 MPa). The TLM is loaded with a PA amount of 2.23H3PO4 molecules per repeat unit (PRU), which provides a proton conductivity of 0.0138 S cm−1 at 150 °C. The three layer structure promotes a membrane for PEMFCs with lower PA leakage and material corrosion. The fuel cell performance based on TLM exhibits a peak power density of 210 mW cm−2 at 150 °C
    • …
    corecore