158 research outputs found

    One-Shot Transfer Learning for Nonlinear ODEs

    Full text link
    We introduce a generalizable approach that combines perturbation method and one-shot transfer learning to solve nonlinear ODEs with a single polynomial term, using Physics-Informed Neural Networks (PINNs). Our method transforms non-linear ODEs into linear ODE systems, trains a PINN across varied conditions, and offers a closed-form solution for new instances within the same non-linear ODE class. We demonstrate the effectiveness of this approach on the Duffing equation and suggest its applicability to similarly structured PDEs and ODE systems.Comment: 7 pages, 3 figures, accepted to 2023 NeurIPS Workshop of The Symbiosis of Deep Learning and Differential Equation

    A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer's patients and targets ATP6V0C for degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in multiple cellular pathways contribute to the development of chronic neurodegeneration such as a sporadic Alzheimer's disease (AD). These, in turn, involve changes in gene expression, amongst which are genes regulating protein processing and turnover such as the components of the ubiquitin-proteosome system. Recently, we have identified a cDNA whose expression was altered in AD brains. It contained an open reading frame of 247 amino acids and represented a novel RING finger protein, RNF182. Here we examined its biochemical properties and putative role in brain cells.</p> <p>Results</p> <p>RNF182 is a low abundance cytoplasmic protein expressed preferentially in the brain. Its expression was elevated in post-mortem AD brain tissue and the gene could be up regulated <it>in vitro </it>in cultured neurons subjected to cell death-inducing injuries. Subsequently, we have established that RNF182 protein possessed an E3 ubiquitin ligase activity and stimulated the E2-dependent polyubiquitination <it>in vitro</it>. Yeast two-hybrid screening, overexpression and co-precipitation approaches revealed, both <it>in vitro </it>and <it>in vivo</it>, an interaction between RNF182 and ATP6V0C, known for its role in the formation of gap junction complexes and neurotransmitter release channels. The data indicated that RNF182 targeted ATP6V0C for degradation by the ubiquitin-proteosome pathway. Overexpression of RNF182 reduced cell viability and it would appear that by itself the gene can disrupt cellular homeostasis.</p> <p>Conclusion</p> <p>Taken together, we have identified a novel brain-enriched RING finger E3 ligase, which was up regulated in AD brains and neuronal cells exposed to injurious insults. It interacted with ATP6V0C protein suggesting that it may play a very specific role in controlling the turnover of an essential component of neurotransmitter release machinery.</p

    A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD). To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD) patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration.</p> <p>Results</p> <p>QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD), though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both <it>in vitro </it>and <it>in vivo</it>, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death caused DNAJB4, suggesting that the binding of SDIM1 to DNAJB4 might sequester DNAJB4, thus increasing cell viability.</p> <p>Conclusion</p> <p>Taken together, we have identified a small membrane protein, which is down regulated in AD brains and neuronal cells exposed to injurious insults. Its ability to promote survival and its interaction with DNAJB4 suggest that it may play a very specific role in brain cell survival and/or receptor trafficking.</p

    A comprehensive insight into functional profiles of free-living microbial community responses to a toxic Akashiwo sanguinea bloom.

    Get PDF
    Phytoplankton blooms are a worldwide problem and can greatly affect ecological processes in aquatic systems, but its impacts on the functional potential of microbial communities are limited. In this study, a high-throughput microarray-based technology (GeoChip) was used to profile the functional potential of free-living microbes from the Xiamen Sea Area in response to a 2011 Akashiwo sanguinea bloom. The bloom altered the overall community functional structure. Genes that were significantly (p &lt; 0.05) increased during the bloom included carbon degradation genes and genes involved in nitrogen (N) and/or phosphorus (P) limitation stress. Such significantly changed genes were well explained by chosen environmental factors (COD, nitrite-N, nitrate-N, dissolved inorganic phosphorus, chlorophyll-a and algal density). Overall results suggested that this bloom might enhance the microbial converting of nitrate to N2 and ammonia nitrogen, decrease P removal from seawater, activate the glyoxylate cycle, and reduce infection activity of bacteriophage. This study presents new information on the relationship of algae to other microbes in aquatic systems, and provides new insights into our understanding of ecological impacts of phytoplankton blooms

    Novel subtractive transcription-based amplification of mRNA (STAR) method and its application in search of rare and differentially expressed genes in AD brains

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR), is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. RESULTS: Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner). CONCLUSION: The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD

    LEVEL OF STRESS AND COPING MECHANISMS OF COLLEGE STUDENTS IN THE ONLINE DISTANCE LEARNING

    Get PDF
    This research aimed to investigate the level of stress and coping mechanisms of the College of Education (CED) students at Notre Dame of Midsayap College (NDMC) in online distance learning. This study also aimed to determine if there is a significant difference in the level of stress of the respondents when grouped according to sex and age. A descriptive research design was undertaken to assess the respondents' level of stress and coping mechanisms. The data were subjected to appropriate statistical tools utilized in the study such as frequency count, percentage distribution, weighted mean, and one-way ANOVA.  Based on the major findings of the study, it can be concluded that students experience stress during their online distance learning brought upon by the COVID-19 pandemic. Bad internet connection, financial problems, disturbances in academic life, improper learning environment, tiredness, and irritation in performing their schoolwork are the significant causes of the stress of the students in dealing with their online distance learning. It was also found that they have different coping mechanisms in dealing with stress in their online distance learning. Such coping mechanisms were praying or meditating, creating a conducive learning environment, thinking positively, and playing online games. It was determined that male respondents experienced more stress in online distance learning than female respondents. It was also noted that younger respondents experience more stress than older respondents.  Article visualizations

    A five-year hedonic price breakdown for desktop personal computer attributes in Brazil

    Get PDF
    The purpose of this article is to identify the attributes that discriminate the prices of personal desktop computers. We employ the hedonic price method in evaluating such characteristics. This approach allows market prices to be expressed as a function, a set of attributes present in the products and services offered. Prices and characteristics of up to 3,779 desktop personal computers offered in the IT pages of one of the main Brazilian newspapers were collected from January 2003 to December 2007. Several specifications for the hedonic (multivariate) linear regression were tested. In this particular study, the main attributes were found to be hard drive capacity, screen technology, main board brand, random memory size, microprocessor brand, video board memory, digital video and compact disk recording devices, screen size and microprocessor speed. These results highlight the novel contribution of this study: the manner and means in which hedonic price indexes may be estimated in Brazil

    CyberKnife® enhanced conventionally fractionated chemoradiation for high grade glioma in close proximity to critical structures

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>With conventional radiation technique alone, it is difficult to deliver radical treatment (≥ 60 Gy) to gliomas that are close to critical structures without incurring the risk of late radiation induced complications. Temozolomide-related improvements in high-grade glioma survival have placed a higher premium on optimal radiation therapy delivery. We investigated the safety and efficacy of utilizing highly conformal and precise CyberKnife radiotherapy to enhance conventional radiotherapy in the treatment of high grade glioma.</p> <p>Methods</p> <p>Between January 2002 and January 2009, 24 patients with good performance status and high-grade gliomas in close proximity to critical structures (i.e. eyes, optic nerves, optic chiasm and brainstem) were treated with the CyberKnife. All patients received conventional radiation therapy following tumor resection, with a median dose of 50 Gy (range: 40 - 50.4 Gy). Subsequently, an additional dose of 10 Gy was delivered in 5 successive 2 Gy daily fractions utilizing the CyberKnife<sup>® </sup>image-guided radiosurgical system. The majority of patients (88%) received concurrent and/or adjuvant Temozolmide.</p> <p>Results</p> <p>During CyberKnife treatments, the mean number of radiation beams utilized was 173 and the mean number of verification images was 58. Among the 24 patients, the mean clinical treatment volume was 174 cc, the mean prescription isodose line was 73% and the mean percent target coverage was 94%. At a median follow-up of 23 months for the glioblastoma multiforme cohort, the median survival was 18 months and the two-year survival rate was 37%. At a median follow-up of 63 months for the anaplastic glioma cohort, the median survival has not been reached and the 4-year survival rate was 71%. There have been no severe late complications referable to this radiation regimen in these patients.</p> <p>Conclusion</p> <p>We utilized fractionated CyberKnife radiotherapy as an adjunct to conventional radiation to improve the targeting accuracy of high-grade glioma radiation treatment. This technique was safe, effective and allowed for optimal dose-delivery in our patients. The value of image-guided radiation therapy for the treatment of high-grade gliomas deserves further study.</p
    corecore