145 research outputs found

    Biogeographical Consequences of Cenozoic Tectonic Events within East Asian Margins: A Case Study of Hynobius Biogeography

    Get PDF
    Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins

    Contrasting diversity patterns of breeding Anatidae in the Northern and Southern Hemispheres

    Get PDF
    For sustaining ecosystem functions and services, environmental conservation strategies increasingly target to maintain the multiple facets of biodiversity, such as functional diversity (FD) and phylogenetic diversity (PD), not just taxonomic diversity (TD). However, spatial mismatches among these components of biodiversity can impose challenges for conservation decisions. Hence, understanding the drivers of biodiversity is critical. Here, we investigated the global distribution patterns of TD, FD, and PD of breeding Anatidae. Using null models, we clarified the relative importance of mechanisms that influence Anatidae community. We also developed random forest models to evaluate the effects of environmental variables on the Anatidae TD, FD, and PD. Our results showed that geographical variation in Anatidae diversity is hemispheric rather than latitudinal. In the species-rich Northern Hemisphere (NH), the three diversity indices decreased with latitude within the tropical zone of the NH, but increased in the temperate zone reaching a peak at 44.5-70.0 degrees N, where functional and phylogenetic clustering was a predominant feature. In the Southern Hemisphere (SH), Anatidae diversity increased poleward and a tendency to overdispersion was common. In NH, productivity seasonality and temperature in the coldest quarter were the most important variables. Productivity seasonality was also the most influential predictor of SH Anatidae diversity, along with peak productivity. These findings suggested that seasonality and productivity, both consistent with the energy-diversity hypothesis, interact with the varying histories to shape the contrasting hemispheric patterns of Anatidae diversity. Phylogenetic diversity (PD) and FD underdispersion, widespread across the species-rich, seasonally productive mid-to-high latitudes of the NH, reflects a rapid evolutionary radiation and resorting associated with Pleistocene cycles of glaciation. The SH continents (and southern Asia) are characterized by a widespread tendency toward PD and FD overdispersion, with their generally species-poor communities comprising proportionately more older lineages in thermally more stable but less predictably productive environments

    Food resources for Spoon-billed Sandpipers (<i>Calidris pygmaea</i>) in the mudflats of Leizhou Bay, southern China

    Get PDF
    Leizhou Bay in Guangdong Province is the most important wintering site in China for the critically endangered Spoon-billed Sandpipers (Calidris pygmaea). As food is usually a strong predictor of presence, in the winters of 2019-2022 we studied arthropod food resources and diet on the intertidal mudflats at the Tujiao and Hebei mudflats in Leizhou Bay. In December 2020, using a sampling device that encloses mobile epibenthic prey before the human sampler would disturb them in shallow pools, we visited 34 stations in their core foraging area at Tujiao. A total of 15 mobile benthic species were identified, including 13 arthropod and 2 fish species, with a total density of 106 animals/m2 (range= 0.2-48 animals/m2), with the lengths of the animals ranging from 1-19 mm. Two amphipod and one cumacean species contributed 85%. On the basis of photographs of foraging during low tide in 2019-2022, the visibly ingested prey items appeared to mainly consist of small shrimp, but also included crabs and fish. At 27 mm (compared with the 22 mm long bill of Spoon-billed Sandpipers) the average visibly ingested prey showed a strong size bias. Among the measured environmental covarying factors (sediment pH, salinity, TOC content, median particle size and distance from the seawall etc.) potentiually affecting the mobile epibenthic prey in shallow pools, only distance from the seawall was significantly and negatively correlated. Densities were higher within 1 km of the seawall (126 animals/m2) than further offshore (69 animals/m2). This may relate to the mangrove forests growing in abundance near the seawall providing released minerals, nutrients, bacterial production and diatoms for the benthic community in the adjacent mudflats. However, the potential negative impact of artificial mangrove expansion in Leizhou mudflats need to be carefully monitored and assessed to balance both mangrove and Spoon-billed Sandpipers conservation

    GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression

    Get PDF
    2012 February 15Angiogenesis is a critical step during cancer progression. The VEGF is a major stimulator for angiogenesis and is predominantly contributed by cancer cells in tumors. Inhibition of the VEGF signaling pathway has shown promising therapeutic benefits for cancer patients, but adaptive tumor responses are often observed, indicating the need for further understanding of VEGF regulation. We report that a novel G protein–coupled receptor, GPR56, inhibits VEGF production from the melanoma cell lines and impedes melanoma angiogenesis and growth, through the serine threonine proline-rich segment in its N-terminus and a signaling pathway involving protein kinase Cα. We also present evidence that the two fragments of GPR56, which are generated by autocatalyzed cleavage, played distinct roles in regulating VEGF production and melanoma progression. Finally, consistent with its suppressive roles in melanoma progression, the expression levels of GPR56 are inversely correlated with the malignancy of melanomas in human subjects. We propose that components of the GPR56-mediated signaling pathway may serve as new targets for antiangiogenic treatment of melanoma. Cancer Res; 71(16); 5558–68.National Institutes of Health (U.S.) (U54CA126515)Howard Hughes Medical Institut

    Mollusc aquaculture homogenizes intertidal soft-sediment communities along the 18,400 km long coastline of China

    Get PDF
    Abstract Aim Molluscs are important grazers, filter and deposit feeders, scavengers and predators, which in turn are food for shorebirds, fish and people. Some species, targeted as human food, have been cultured along the Chinese coast for hundreds of years. To examine whether aquacultural practices have meanwhile affected biodiversity gradients, we measured mollusc community structure along the coast of China in habitats which are intensively used by humans. Location Chinese coast. Methods We sampled 21 intertidal sites spanning 20 latitudinal degrees and 18,400 km of coastline. We assessed alpha diversity to verify whether mollusc communities exhibit the expected biodiversity gradient with latitude and beta diversity gradients with distance. To examine whether human activities such as transportation and culturing could have affected these patterns, we distinguished commercial from non-commercial mollusc species and compared the differences in distribution, density, alpha diversity and beta diversity. Results We found non-commercial species showed the expected biodiversity gradients. Commercial species (a) dominated the intertidal mollusc communities at 19 of the 21 sites and compared with non-commercial species, (b) exhibited wider geographical distributions, (c) showed no significant change in Bray-Curtis index (abundance-based beta diversity) with either geographical or climatic distance, (d) exhibited lower average dissimilarities and (e) did not show a decrease in species richness and Shannon diversity with latitude. Combining all species, trends were the same as for the commercial species. Main conclusions A few cultured species dominated the intertidal mollusc communities in high densities along the Chinese coastline, taking over the ecological roles of the native species but not driving them extinct. In this way, aquacultural practices have exerted a homogenizing influence strong enough to erase basic biodiversity gradients. Since molluscs are food for the growing human population and the shrinking populations of migratory animals, coastal planning and management of both intertidal habitats and the exploitative activities employed need to incorporate these dimensions

    Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White‐fronted Goose Anser erythropus

    Get PDF
    Abstract: The Lesser White‐fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered by ground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana‐Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka, and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June‐August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species' distribution is important in understanding the large‐scale ecological consequences of rapid global change and establishing conservation management strategies

    When a typical jumper skips:Itineraries and staging habitats used by Red Knots (<i>Calidris canutus piersmai</i>) migrating between northwest Australia and the New Siberian Islands

    Get PDF
    The ecological reasons for variation in avian migration, with some populations migrating across thousands of kilometres between breeding and non-breeding areas with one or few refuelling stops, in contrast to others that stop more often, remain to be pinned down. Red Knots Calidris canutus are a textbook example of a shorebird species that makes long migrations with only a few stops. Recognizing that such behaviours are not necessarily species-specific but determined by ecological context, we here provide a description of the migrations of a relatively recently described subspecies (piersmai). Based on data from tagging of Red Knots on the terminal non-breeding grounds in northwest Australia with 4.5- and 2.5-g solar-powered Platform Terminal Transmitters (PTTs) and 1.0-g geolocators, we obtained information on 19 route-records of 17 individuals, resulting in seven complete return migrations. We confirm published evidence that Red Knots of the piersmai subspecies migrate from NW Australia and breed on the New Siberian Islands in the Russian Arctic and that they stage along the coasts of southeastern Asia, especially in the northern Yellow Sea in China. Red Knots arrived on the tundra breeding grounds from 8 June onwards. Southward departures mainly occurred in the last week of July and the first week of August. We documented six non-stop flights of over c. 5000 km (with a maximum of 6500 km, lasting 6.6 days). Nevertheless, rather than staging at a single location for multiple weeks halfway during migration, piersmai-knots made several stops of up to a week. This was especially evident during northward migration, when birds often stopped along the way in southeast Asia and 'hugged' the coast of China, thus flying an additional 1000-1500 km compared with the shortest possible (great circle route) flights between NW Australia and the Yellow Sea. The birds staged longest in areas in northern China, along the shores of Bohai Bay and upper Liaodong Bay, where the bivalve Potamocorbula laevis, known as a particularly suitable food for Red Knots, was present. The use of multiple food-rich stopping sites during northward migration by piersmai is atypical among subspecies of Red Knots. Although piersmai apparently has the benefit of multiple suitable stopping areas along the flyway, it is a subspecies in decline and their mortality away from the NW Australian non-breeding grounds has been elevated

    Deregulation of DUX4 and ERG in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function
    • 

    corecore