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Abstract
Aim: Molluscs are important grazers, filter and deposit feeders, scavengers and pred-
ators, which in turn are food for shorebirds, fish and people. Some species, targeted 
as human food, have been cultured along the Chinese coast for hundreds of years. To 
examine whether aquacultural practices have meanwhile affected biodiversity gradi-
ents, we measured mollusc community structure along the coast of China in habitats 
which are intensively used by humans.
Location: Chinese coast.
Methods: We sampled 21 intertidal sites spanning 20 latitudinal degrees and 
18,400 km of coastline. We assessed alpha diversity to verify whether mollusc com-
munities exhibit the expected biodiversity gradient with latitude and beta diversity 
gradients with distance. To examine whether human activities such as transportation 
and culturing could have affected these patterns, we distinguished commercial from 
non-commercial mollusc species and compared the differences in distribution, den-
sity, alpha diversity and beta diversity.
Results: We found non-commercial species showed the expected biodiversity gra-
dients. Commercial species (a) dominated the intertidal mollusc communities at 
19 of the 21 sites and compared with non-commercial species, (b) exhibited wider 
geographical distributions, (c) showed no significant change in Bray-Curtis index 
(abundance-based beta diversity) with either geographical or climatic distance, (d) 
exhibited lower average dissimilarities and (e) did not show a decrease in species 
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1  | INTRODUC TION

Along shallow coasts with adequate tidal ranges, intertidal shores 
(e.g. rocky shores, soft sediments, intertidal sand and mudflats) 
form the link between marine and terrestrial ecosystems (Healy 
et al., 2002). In many such systems, molluscs occupy a central po-
sition in the food web, being the core of a turntable of energy flow 
and material cycling as they graze the epiphytobenthos and phyto-
plankton (e.g. Christianen et al., 2017), scavenge putrefied organ-
isms and feed on other benthos (Gosling, 2008), and are fed upon 
by consumers such as shorebirds, fish and humans (e.g. Mathot 
et  al.,  2018). However, with increasing human activities along 
coastlines (especially land claims), within the past 30  years 16% 
of the global intertidal mudflats have been lost or altered (Dong 
et al., 2016; Martin et al., 2005; Murray et al., 2019). The remaining 
systems have suffered from various disturbances such as farm-
ing and harvesting activities (Gentry et al., 2017; Piersma, 2009; 
Worm et al., 2006).

The dispersal of organisms is usually constrained by natural bar-
riers interacting with dispersal capacities, so that biodiversity tends 
to become more dissimilar with increasing geographic and climatic 
distances (Baselga et  al.,  2013; Kraft et  al.,  2011; Tobler,  1970). 
Numerous studies, on a great variety of organisms in all ecosystem 
types, have shown spatial patterns consistent with these biogeo-
graphical “laws” (Baselga et al., 2013; Josefson & Göke, 2013; Socolar 
et al., 2016). However, impacted by human activities, and the allevi-
ation of dispersal constraints due to the transportation of organisms 
being one of the underlying causes (Rodrigues et  al.,  2013), biodi-
versity gradients have been, and are now being, altered (Millennium 
Ecosystem Assessment,  2005). For example, ancient agri- and 
aquaculturists began the cultivation of a few useful edible species, 
a process continuing today as farmers, fishermen and national and 
transnational corporations move around the few most productive 
plants and animals across an increasingly large part of the Earth 
(Bengtsson et al., 2005; Rodrigues et al., 2013; Socolar et al., 2016).

Stretching 2,500 km from south to north, spanning 20 latitudinal 
degrees and with a steep climatic gradient (Figure 1), the 18,400 km 
long coastline of China offers a great diversity of intertidal habitats 
(Alistair, 2000). Along this lengthy coastline, almost all the inshore 
intertidal areas, and even many offshore areas, have been altered 
by aquaculture (Li et al., 2011; Williams et al., 2019). China now pro-
duces one-third of the world's reported captures of “fish” (i.e. fish 
and shellfish), and two-thirds of the world's reported aquaculture 
production (FAO, 2020). Mollusc aquaculture on intertidal habitats 
occupies a large part of aquaculture production (Guo et al., 1999), 
transforming the species composition in coastal ecosystems 
(Gosling, 2008).

In a form of aquaculture strongly developed in Asia, especially 
in China, during the harvest most of the molluscs are taken away, 
but regular reseeding brings new molluscs to the open intertidal 
flats (Gosling, 2008; Li et al., 2011; Wang & Wang, 2008). Mollusc 
aquaculture is an activity by which species are introduced from one 
community into another, where they may add to, or replace, the local 
species (Forrest et al., 2009; Lin et al., 2015). Humans routinely col-
lect the juveniles of commercial species of mollusc at one location 
and transport and spread them to intertidal mudflats elsewhere 
(Appendix S1: Figure S1; Gosling, 2008; Wang & Zhang, 1995). As 
a consequence, mollusc species of significant economic impor-
tance (human food or aquaculture feed) have been introduced to 
intertidal soft-sediment flats where they previously did not occur 
(Guo et al., 1999; Li et al., 2011). Because the commercial species 
are chosen on the basis of their strong adaptability, such species 
have quickly become the most abundant in some intertidal areas 
(Gosling, 2008; Lin et al., 2015). Some of these introduced species, 
therefore, have been considered invasive, pushing local species 
to low densities (Du et  al.,  2011). Noting that other human activ-
ities along China's coast may result in direct losses (or sometimes 
gains) of species, and these include habitat degeneration (e.g. by 
pollution; Liu & Diamond,  2005), habitat removal (by land claims; 
Murray et al., 2014; Piersma et al., 2016) and habitat restoration (Fan 

richness and Shannon diversity with latitude. Combining all species, trends were the 
same as for the commercial species.
Main conclusions: A few cultured species dominated the intertidal mollusc communi-
ties in high densities along the Chinese coastline, taking over the ecological roles of 
the native species but not driving them extinct. In this way, aquacultural practices 
have exerted a homogenizing influence strong enough to erase basic biodiversity 
gradients. Since molluscs are food for the growing human population and the shrink-
ing populations of migratory animals, coastal planning and management of both in-
tertidal habitats and the exploitative activities employed need to incorporate these 
dimensions.

K E Y W O R D S

aquaculture, beta diversity, biotic homogenization, intertidal mudflat, invasion, molluscs
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et al., 2021), the extent of such ecological effects of intertidal aqua-
culture, remain to be documented.

Biotic homogenization is the process of species composition at 
different places becoming more alike (Baiser et  al.,  2012; Magurran 
et  al.,  2015). “Beta diversity” is commonly used in measuring biotic 
homogenization (Baselga et al., 2013; Kraft et al., 2011; Tobler, 1970) 
and in evaluating “ecosystem health” (Socolar et al., 2016). Both spe-
cies composition (represented by Sorensen dissimilarity, hereafter 
βSOR, incidence-based beta diversity index to summarize changes in 
the composition of species lists) and species density (represented by 
Bray-Curtis dissimilarity, hereafter βBC, abundance-based beta diver-
sity index; Cassey et al., 2008) contribute to the variation of beta di-
versity. However, when communities are affected by invasive species, 
local species may decrease in density but not go extinct (Gurevitch & 
Padilla,  2004), so that dissimilarities may decrease especially when 
taking densities into account. Changes in the Bray–Curtis dissimilarity 
index indicate “ecological replacement,” that is commercial species re-
placing most of the space previously occupied by the original species, 
but not driving them extinct as in full replacement.

In this contribution, we aim to investigate whether aquacultural 
practices have influenced biodiversity gradients in mollusc commu-
nity structure along the coast of China. In the absence of adequate 
historical data on mollusc distributions in China, but to still be able 
to infer whether aquaculture played a role in explaining the biodi-
versity patterns found, we here distinguished two species catego-
ries, one which consists of species not known to be commercially 

important nor cultured, the other of species with commercial value 
known to be cultured. We compared the densities, distributions and 
the distance decay of similarity indices between non-commercial 
and commercial species. We examined (a) whether commercial 
species were more widespread than non-commercial species, (b) 
whether non-commercial species still kept original biodiversity 
gradients and showed the distance decay of similarity whereas 
commercial species were homogenized and thus (c) whether the 
distance decay of similarity of all coastal mollusc species had been 
erased. Deviations would reject the null hypothesis of no human 
effects. Furthermore, with mollusc communities sampled across 
20 latitudinal degrees, we are in the position to examine whether 
latitudinal changes in species richness and Shannon diversity index 
among the different categories of mollusc (all, non-commercial and 
commercial species, respectively) vary according to expectation, 
that is that the highest species diversity occurs in equatorial regions 
with gradual declines towards higher latitudes (Rex et  al.,  2000; 
Willig et al., 2003).

2  | METHODS

2.1 | Study sites and sampling

Sampling was conducted from early April to late May 2018 at 21 
sites on intertidal flats along the coastline of China, extending from 

F I G U R E  1   Study sites and the climatic gradient along the coast of China. (a) 21 sampling sites (red dots) along the coast. (b) The average 
temperature decreased with increasing latitude. (c) The local temperature range increased with increasing latitude
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Dongliaodao in the far south (20°48′N) to Panjin in the far north 
(40°48′N) (Figure  1a, Appendix S1: Table  S1). For each site, mean 
annual air temperature and the temperature range (expressed as the 
difference between the hottest and the coldest average monthly 
temperature) were taken from www.weath​erbase.com. We calcu-
lated the average over the past >30 years (weather data available 
from 30 to 120 years at different sites). The local average tempera-
ture decreased with growing latitude (Pearson correlation coeffi-
cient = 0.98, p < .001, n = 21, Figure 1b) and the local temperature 
range increased with growing latitude (Pearson correlation coeffi-
cient = 0.99, p < .001, n = 21, Figure 1c).

All the sampling stations are located on open “natural” intertidal 
flats, because this is where mollusc aquaculture is conducted along 
the coast China. At each site, we sampled across grids (for the ra-
tionale; see Bijleveld et al., 2012). Depending on the local situation 
(e.g. the size of the intertidal flats), gridlines were set either 50 or 
500 m apart to cover the area from coast to the low water line (see 
Sampling sites in Appendix S1). Across the 21 sampling sites, a total 
of 838 sampling stations were visited. At each sampling station, a 
sediment core with a surface area of 0.019 m2 was taken to a depth 

of 20 cm and washed over a 0.5 mm sieve. The sieved samples were 
stored frozen prior to analysis. In the laboratory, molluscs were 
counted and identified to species level using a dissecting micro-
scope; high density (e.g. 1,000 individuals in one sample) samples 
were subsampled by a Motodo (1959) before counting.

2.2 | Distinguishing between non-commercial and 
commercial species

To obtain information on the commercial status of each mollusc spe-
cies, we searched on “Web of Science,” “CNKI,” “Wanfang Data,” 
“Google scholar” for the scientific name, Chinese name, or English 
name of species, and combined the word with “aquaculture”, “farm”, 
“culture”, “养殖” (“culture” in Chinese), “commercial food”, “food”, “经
济物种”(“commercial food” in Chinese) or “食物” (“food” in Chinese). 
With more than 50 years of highly intensive aquaculture practices 
along the Chinese coast, the cultured commercial species have 
spread and invaded across a large range. In the absence of historical 
data, the original distribution of most species will remain unknown. 

F I G U R E  2   Species accumulation 
curves of shellfish at the 21 sampling 
sites along the coast of China. Both 
interpolated values (solid parts of the 
lines) and extrapolate values (dashed 
part of the lines) were calculated 
and established for a sample size of 
150
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TA B L E  1   Mollusc species recorded during benthic sampling along China's coast in 2018. The Brachiopod Lingula anatina was included in 
our analysis, as it can be considered analogous to a bivalve molluscs in terms of ecological role and commercial exploitation

Species
Commercial 
species References Feeding strategy

Bivalvia

Angulus compressissima No Deposit feeder

Coecella formosae No Unknown

Codakia golikovi No Suspension feeder

Cryptonema producta No Suspension feeder

Cyclina sinensis Yes Guo et al. (1999) Suspension feeder

Donax dysoni No Suspension feeder

Elachisina ziczac No Grazer

Gafrarium pectinaum No Suspension feeder

Glauconome chinensis Yes Guo et al. (1999); Wang and 
Deng (1999)

Deposit and suspension feeder

Glauconome primeana No Suspension feeder

Gomphina veneriformis Yes Guo et al. (1999) Suspension feeder

Laternula marilina Yes Zhuang (2005) Suspension feeder

Mactra chinensis Yes Guo et al. (1999) Suspension feeder

Mactra veneriformis Yes Guo et al. (1999) Suspension feeder

Meretrix lusoria Yes Chen (2003) Deposit and suspension feeder

Meretrix lyrata Yes Chu & Kumar (2008); McCoy 
and Chongpeepien (1988)

Suspension feeder

Meretrix pethechialis Yes Zhang et al. (2016) Suspension feeder

Moerella iridescens Yes Guo et al. (1999) Suspension feeder

Musculus senhousei Yes Guo et al. (1999) Suspension feeder

Mytilus galloprovincialisa  Yes Guo et al. (2012) Suspension feeder

Potamocorbula laevis Yes Guo et al. (1999); Yang 
et al. (2016)

Suspension feeder

Pseudopythina Tsurumaru No Unknown

Ruditapes philippiarum Yes Guo et al. (1999) Suspension feeder

Scapharca broughtonii Yes Guo et al. (1999); Fu 
et al. (2005)

Suspension feeder

Scapharca subcrenata Yes Guo et al. (1999) Suspension feeder

Sinonovacula constricta Yes Guo et al. (1999) Suspension feeder

Solen strictus Yes Chen et al. (2009) Suspension feeder

Tentidonax kiusiuensis No Suspension feeder

Gastropoda Unknown

Assiminea violacea No Suspension feeder

Batillaria zonalis No Deposit and suspension feeder

Bullacta exarata Yes Guo et al. (1999) Deposit feeder

Cerithidea cingulata No Scavenger, deposit and suspension feeder

Cerithidea sinensis No Grazer

Cerithideopsis largillierti No Grazer

Laguncula pulchella No Predator

Littoraria intermedia No Grazer and deposit feeder

Lucidestea matusimana No Grazer

Nerita yoldii No Grazer

(Continues)
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Therefore, we defined commercial species as those mollusc species 
recorded in publications, reports and books in the context of aqua-
cultural activities and/or common food production. The Brachiopod 
Lingula anatina was included in our analysis, as this species can be 
considered analogous to bivalve molluscs in terms of both ecological 
role and commercial exploitation.

2.3 | Diversity metrics and statistical analyses

To ascertain the distribution of the molluscs, we estimated the fre-
quency of occurrence of non-commercial and commercial species 
at two spatial scales. At the local scale (study site), each sampling 
station was considered a unit and the frequency of occurrence of 
each species was calculated. These local frequencies of occurrence 
of non-commercial and commercial species were averaged for each 
of the 21 sites and compared using paired Student's t tests. At the 
scale of the coast of China, the overall frequency of occurrence used 
the 21 sites as units.

Latitudinal distribution ranges of each species were calculated 
from the southern- and northern-most records in this study. If a 

species was recorded at a single site only, we recorded the latitu-
dinal range as 0.1 degrees. Independent t tests were used to assess 
the differences between non-commercial and commercial species in 
overall (the scale of the whole China coast) frequencies of occur-
rence and latitudinal distribution ranges.

We used beta diversity to assess the dissimilarities between 
mollusc communities at the 21 sites. Beta diversity between sites 
was assessed by both the Bray-Curtis (βBC) and Sorensen (βSOR) dis-
similarity metrics using R package betapart (Baselga & Orme, 2012). 
The Bray–Curtis diversity (abundance-based) metric takes into ac-
count the relative abundances of species and effectively reduces the 
influence of incomplete sampling (Cassey et al., 2008). In contrast, 
the Sorensen diversity, which is based on “incidence” (presence or 
absence at a site), has been more widely used, but is much less in-
formative. To assess the relationships between beta diversity and 
geographical and climatic distance, nonlinear regression was used 
to fit exponential curves expressed as y = a.eb.x, where y is dissimi-
larity at distance x, a initial dissimilarity (intercept) and b the rate of 
distance growth (slope, Baselga et al., 2013). Geographical distances 
between sites (in km) were computed as Euclidian distances be-
tween the centroids of sites, climatic distance (in °C) between sites 

Species
Commercial 
species References Feeding strategy

Mitrella bella No Predator and scavenger

Nassarius festiva No Scavenger

Nassarius semiplicatus No Scavenger

Nassarius sinarus No Scavenger

Nassarius variciferus No Scavenger

Neverita didyma No Predator

Odostomia limpida No Predator

Odostomia subangulata No Predator

Pseudoliotia pulchella No Unknown

Punctacteon yamamurae No Predator

Retusa cecillii No Scavenger

Retusa minima No Scavenger

Stenothyra glabar No Grazer

Salinator fragilis No Grazer

Terebra bellanodosa No Predator

Terebra taylori No Predator

Theora lata No Unknown

Turbonilla risso No Unknown

Umbonium thomasi Yes Wang et al. (2016); Zheng 
and Hu (1991)

Grazer

Brachiopoda

Lingula anatine Yes Printrakoon and Kamlung-ek 
(2013); McCoy and 
Chongpeepien (1988)

Suspension feeder

aInvasive species along the Chinese coast.

TA B L E  1   (Continued)
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were calculated by the differences of the average temperature be-
tween sampling sites. To avoid undefined values, an arbitrary small 
quantity (0.0001) was added to values when climatic distance = 0 
(Baselga et al., 2013).

The degree of association between beta diversity and geograph-
ical or climatic distance was computed as a Pearson correlation (r), 
after linearizing the increase curves through log-transformation 
(Baselga et  al.,  2013). Mantel tests were used to assess the 

F I G U R E  3   Distribution of non-commercial (orange) and commercial (blue) mollusc species at different sites (latitudes). Square symbols 
represent the records in specific site (latitude), bands show the latitude range (from South to North) of individual species. Sampling sites are 
located by latitude along the top
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significance of r values using package vegan. An increase of dissimi-
larity index with growing distance means that similarity decays with 
growing distance. We tested the slope differences between beta di-
versity index and distance measures among three species categories 
(commercial, non-commercial and all species) by bootstrapping using 
the boot package (Canty & Ripley, 2008) with 1,000 bootstrap sam-
ples. Package ggplot2 and gridExtra were used for graphs.

Two measures of alpha diversity were used to describe the latitu-
dinal diversity gradient of molluscs along China's coast: observed di-
versity (species richness) given the same number of samples taken at 
each site, and the expected diversity (Shannon diversity) considered 
both the number of rare species and their relative densities within 
a sample (Chao et  al.,  2014). Considering the differences in sam-
pling intensity among sites, we used the “extrapolated” total species 
richness and Shannon metrics (Chao et al., 2014). The extrapolated 
species richness and Shannon metrics were estimated using Hill's 
numbers (i.e. estimation of the effective number of species, (Chao 
et al., 2014; Hill, 1973)). The Hill number q weighs the sensitivity of 
the measure to relative abundance, where q  =  0 is simply species 
richness; q = 1 is the exponential form of Shannon diversity. These 
metrics were computed with the R package iNEXT (Chao et al., 2014; 
Hsieh et al., 2016) using a fixed sample size of 150 (Figure 2). Linear 
regression model was used to evaluate whether (extrapolated) spe-
cies richness and (extrapolated) Shannon diversity of three catego-
ries decreased with growing latitude. In order to test for slope and 

intercept differences between alpha diversity index and latitude 
among species categories, the frequency distributions of the slopes 
were estimated by bootstrapping (n = 1,000 bootstraps) using the 
boot package (Canty & Ripley, 2008). When examining a parameter 
markedly larger in one species category than another, the possibility 
of obtaining the opposite result by chance was empirically computed 
by comparing the bootstrap parameter distributions.

All analyses were run in R Studio version 1.1.383 in Mac (R Core 
Team, 2018). We used α < 0.1 (Type II error) to establish statistical 
significance. Means are reported ± SD.

3  | RESULTS

At the 21 sites visited, a total of 58 mollusc species were recorded 
(Table  1). Locally, the number of species varied between 3 and 27 
(mean = 14 ± 6, Appendix S1: Table S2). Of the mollusc species re-
corded, 37 were considered to be non-commercial and 21 as com-
mercial (Table 1). The distribution ranges of non-commercial species 
(average 6.6 ± 7.0 latitudinal degrees) were much narrower than that of 
commercial species (11.8 ± 8.6 latitudinal degrees, independent t test, 
t = 2.14, df = 56, p = .04, Figure 3). Non-commercial species occurred 
at 17% (± 16%) of the sites, while commercial species occurred at 37% 
(± 27%) (independent t test, t = 3.7, df = 56, p < .001, Figure 3). At 14 
of the 21 sites, the commercial species (with an average of 6 species) 

Sampling Sites

Density (Individuals 
per m2)

Observed Species 
Richness

Frequency of 
Occurrence (%)

xNon−Comm. xComm. xNon−Comm. xComm. xNon−Comm. xComm.

Panjin 25 232 3 6 8 ± 5 23 ± 24

Gaizhou 1 3 1 2 3 3 ± 0

Yalu Jiang 2 48 2 6 2 ± 0 7 ± 8

Nanpu 53 3,690 9 8 8 ± 8 23 ± 16

Diaokou 133 1,301 7 11 18 ± 14 32 ± 31

Nanhaipu 1,011 1,266 10 12 19 ± 21 30 ± 23

Changyi West 739 1,964 9 11 12 ± 11 30 ± 32

Changyi East 82 231 7 8 8 ± 9 17 ± 23

Xiuzhenhe 17 347 3 11 11 ± 7 20 ± 14

Mutaohe 60 2,471 5 9 15 ± 17 27 ± 20

Xingzhuanghe 220 4,101 3 7 24 ± 27 26 ± 34

Xinchuangang 61 55 9 8 9 ± 13 7 ± 6

Tongzhou 495 503 6 6 32 ± 19 22 ± 23

Qidong 15 285 5 7 6 ± 6 27 ± 27

Cixi 4 483 2 4 3 ± 0 28 ± 21

Ruian 106 836 6 4 15 ± 5 39 ± 33

Xinghuawan 135 1,087 7 6 23 ± 16 30 ± 20

Shenhu 52 2,058 7 11 8 ± 6 34 ± 32

Raoping 57 1 2 1 21 ± 10 3

Hailingdao 265 4,435 10 8 7 ± 5 29 ± 33

Dongliaodao 237 404 15 12 6 ± 7 20 ± 18

TA B L E  2   The observed densities, 
species richness and frequency of 
occurrence of non-commercial (non-
comm.) and commercial (comm.) species at 
each sampling site
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outnumbered the non-commercial species (average of 7 species, paired 
Student's t test, t = 1.87, df = 20, p =.08, Table 2). Non-commercial 
species occurred on average at 12% (± 8%) of the sampling stations, 
whereas commercial species occurred at 23% (± 10%) of the stations 
(paired Student's t test, t = 4.15, df = 20, p < .001, Table 2). The overall 
densities of commercial species were higher than non-commercial spe-
cies at 19 of the total 21 sites (Table 2, Figure 4).

The dissimilarity index accounting for the abundances of the 
non-commercial species βBC was positively correlated with both 
geographical and climatic distance (Figure 5), while in the commer-
cial species βBC did not significantly increase with either measure 

(Figure 5, Appendix S1: Table S3). For all species combined, the dis-
similarity metric βBC did not significantly correlate with the two mea-
sures either (Figure 5, Appendix S1: Table S3). Pairwise comparisons 
on bootstrapped intercepts in βBC between the commercial species, 
non-commercial species, and all species exhibited no significant dif-
ferences between the groups (Appendix S1: Figure S2, Appendix S1: 
Table  S3), but there were marked differences in the slopes of βBC 
on distance between the groups (Appendix S1: Figure S3, Appendix 
S1: Table  S3, non-commercial species  >  all species  >  commercial 
species, p <  .001 for all). By contrast, βSOR in all the three catego-
ries increased with both distance measures (Figure  5); there were 

F I G U R E  4   Proportion of density of mollusc species at each site. Textured squares represent non-commercial species and filled squares 
represent commercial species. Only species that reached 5% of local total density are shown, others are grouped into two “Others” 
categories of non-commercial and commercial species, respectively
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no significant differences in bootstrapped slopes between the three 
groups (Appendix S1: Figure S3, Appendix S1: Table S3). However, 
pairwise comparisons of bootstrapped intercepts showed marked 
differences between categories: non-commercial species > all spe-
cies > commercial species (p <  .001 for all, Figure 5, Appendix S1: 
Figure S2 and Table S3), so that the average dissimilarities were the 
highest in non-commercial species and the lowest in the commercial 
species for both βSOR and βBC (Figure 5).

Non-commercial species richness (R2  =  .13, F  =  3.0, df  =  19, 
p =  .1) and the Shannon diversity index (R2 =  .15, F = 3.4, df = 19, 
p = .08) exhibited the expected decrease with growing latitude, but 
in commercial species there was no significant change in species 
richness with growing latitude (R2 = .002, F = 0.03, df = 19, p = .85) 
nor in the Shannon diversity index (R2 = .05, F = 0.09, df = 19, p = .77; 
Figure  6). For all species combined, there were no significant cor-
relations between species richness or Shannon diversity index and 
latitude either (species richness: R2 =  .04, F = 0.7, df = 19, p =  .41, 
Shannon diversity index: R2 = .05, F = 0.09, df = 19, p = .77; Figure 6). 
The bootstrapped slopes of all species were markedly steeper than 

the slopes of commercial species, but flatter than the slope of non-
commercial species (Appendix S1: Figure  S4). The extrapolated 
alpha diversity index exhibited similar trends (Figure 2, Appendix S1: 
Figures S4 and S5), except that the extrapolated species richness of 
non-commercial species did not significantly decrease with growing 
latitude (Appendix S1: Figure S5).

4  | DISCUSSION

In this study, it was discovered that commercial species of intertidal 
soft-sediment living molluscs (and a brachiopod), animals which 
have been deliberately and intensively transported to be reseeded 
and cultured over at least the past 50 years (Cao et al., 2015; Guo 
et al., 1999; Li et al., 2011), generally occurred in much higher densi-
ties (Figure 4), had wider distributions (Table 2, Figure 3) and showed 
larger latitudinal ranges than non-commercial species (Figure  3). 
For the non-commercial species, the expected geographical pat-
terns of decay of similarity with growing distance (at least in the 

F I G U R E  5   Distance effect of dissimilarity of mollusc assemblages along China's coast for all species (top row), non-commercial species 
(middle row) and commercial species (bottom row). Both geographical and climatic distances are used for the distance, βSOR and βBC are used 
for dissimilarity metrics, exponential curves are shown with 95% confidence interval. Only trends with a tendency towards type II error 
significance (p < .1) are shown
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abundance-based dissimilarity index βBC) and the decrease with 
growing latitude, were still recognizable along the coast of China. 
These gradients were undetected in the βBC and latitudinal biodi-
versity gradients of commercial species and all the species com-
bined (Figure 6). Although incidence-based dissimilarity index βSOR 
still exhibited similar trends of increase with growing distance in the 
three categories, the original high dissimilarities among communities 
(reflected by non-commercial species) have been weakened by low 
dissimilarities of commercial species (Figure 5). All these results sug-
gest that commercial aquaculture activities have homogenized mol-
lusc communities along the long and varied coast of China, erasing 
the expected biodiversity gradients.

Interestingly, different from the abundance-based index 
(βBC), the decay of similarity with growing distance was present 
in the incidence-based index (βSOR) in all three species categories 

(commercial, non-commercial, and all). This resulted from the differ-
ent contributions of mollusc species on either the incidence-based 
or the abundance-based diversity indices. For example, the single 
commercial species Potamocorbula laevis contributed >95% of the 
total density in Hailingdao (Figure  4), but they only contributed 1 
of 18 species in the local species list. These indicate that ecological 
rather than full replacement occurs when commercial species ex-
pand in the places of introduction. Apparently, commercial species 
do not generally drive local species to extinction.

Although this appears to be the first study reporting the ho-
mogenization by aquaculture of marine biodiversity gradients, 
the loss of these biodiversity gradients along the coast of China 
should not come as a surprise. As commercial species are cho-
sen for high economic value and adaptability, they tend to be-
come dominant in a short time (Gosling, 2008; Lin et al., 2015). 

F I G U R E  6   Diversity gradients of 
mollusc assemblages along China's 
coast. The relationship between mollusc 
species richness and Shannon diversity 
with growing latitudes. Only trends 
with a tendency towards type II error 
significance (p < .1) are shown
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For example, when the snail Bullacta exarata was introduced from 
Jiangsu Province into Laizhou Bay (Shandong Province) for aqua-
culture, soon it occupied more than 80% of the intertidal mudflats 
(Du et al., 2011).

In addition to being outcompeted by introduced commercial com-
petitors (Lin et al., 2015), stocks of local species in some cases are 
deliberately reduced by humans (Forrest et al., 2009; Gosling, 2008; 
NBSO, 2010; Wang & Zhang, 1995). For example, before reseeding 
with the spat of commercial species, native species with low eco-
nomic value, especially those which are potential predators or com-
petitors to commercial species, are routinely removed with poisons 
(Li et al., 2011; Melville et al., 2016). Reseeding is also facilitated by 
nets, wood frames and low banks constructed in intertidal areas, 
leading to transformation of sediments, which may negatively affect 
native species (Guo et al., 1999; Wang & Wang, 2008). More seri-
ously, engineering projects (e.g. land claims, construction of ports; 
Dong et al., 2016; Murray et al., 2014), pollution (e.g. from sewage, 
industrial effluent, agricultural wastewater, Cao & Wong, 2007) and 
other disturbances to intertidal sediments will result in species losses 
(Islam & Tanaka, 2004) or benefit several species (Dong et al., 2016). 
All these can affect mollusc communities.

The biotic homogenization of the biodiversity gradient and the loss 
of the latitudinal biodiversity gradient of intertidal mollusc communi-
ties in China, which we argue is mainly the result of intense and wide-
spread aquacultural practices, is probably not exceptional. Agriculture, 
urbanization, aquaculture, overfishing and deforestation have caused 
the extinction or rarity of many taxonomic groups, altering biodiversity 
gradients in numerous ecosystems (Baiser et al., 2012; Diana, 2009; 
Magurran et al., 2015; Socolar et al., 2016). With the increasing de-
mand for seafood (Cao et al., 2015; Li et al., 2011; Naylor et al., 2000), 
development of mollusc aquaculture in coastal and offshore areas have 
been strongly promoted (Gentry et al., 2017). This will further aggra-
vate biotic homogenization in coastal communities in the future.

There is increasing awareness of, and concern about, potential 
ecological impacts of long-distance mollusc introductions (Brenner 
et  al.,  2014; Muehlbauer et  al.,  2014). Long-distance transport of 
molluscs will facilitate the spread of pathogens or parasites, which 
may infest native species and result in the outbreak of diseases 
(Ruesink et al., 2005). Changes in biodiversity will also affect eco-
system properties and services such as energy transfer and nutrient 
retention (Worm et al., 2006). A decrease or disappearance of native 
mollusc species will have cascading effects, in some cases causing 
the collapses of other species (Loreau et al., 2001). In addition, pol-
lution and disturbances along with aquaculture will negatively af-
fect marine biodiversity. Protocols to assess and manage such risks 
have been developed in Europe (Brenner et al., 2014; Muehlbauer 
et al., 2014). In China, as yet there are no such safeguards.

Nevertheless, it is important to note that commercial mollusc 
species may also benefit some species, especially the molluscivores 
among the migratory shorebird species (Yang et  al.,  2013, 2016; 
Zhang et al., 2019). For example, the high densities of the commer-
cial species Potamocorbula laevis at Nanpu, one of the study sites, 
have supported an increasing number of staging red knots Calidris 

canutus when nearby intertidal habitats were lost (Yang et al., 2016). 
In this light, restoration of coastal ecosystems by simply stopping 
intertidal mollusc aquaculture may include unintended negative 
consequences for the overall community structure and ecosystem 
functioning, including their role as refuelling areas for shorebirds 
(Choi et al., 2019; Ma et al., 2014). Clearly, future coastal manage-
ment and conservation plans should carefully explore changes in 
intertidal community composition and assess, or possibly control 
and mitigate, the pressures from expanding aquaculture.
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