56 research outputs found
Kinematic dynamo action in a sphere: Effects of periodic time-dependent flows on solutions with axial dipole symmetry
Choosing a simple class of flows, with characteristics that may be present in
the Earth's core, we study the ability to generate a magnetic field when the
flow is permitted to oscillate periodically in time. The flow characteristics
are parameterised by D, representing a differential rotation, M, a meridional
circulation, and C, a component characterising convective rolls. Dynamo action
is sensitive to these flow parameters and fails spectacularly for much of the
parameter space where magnetic flux is concentrated into small regions.
Oscillations of the flow are introduced by varying the flow parameters in
time, defining a closed orbit in the space (D,M). Time-dependence appears to
smooth out flux concentrations, often enhancing dynamo action. Dynamo action
can be impaired, however, when flux concentrations of opposite signs occur
close together as smoothing destroys the flux by cancellation.
It is possible to produce geomagnetic-type reversals by making the orbit
stray into a region where the steady flows generate oscillatory fields. In this
case, however, dynamo action was not found to be enhanced by the
time-dependence.
A novel approach is taken to solving the time-dependent eigenvalue problem,
where by combining Floquet theory with a matrix-free Krylov-subspace method we
avoid large memory requirements for storing the matrix required by the standard
approach.Comment: 22 pages, 12 figures. Geophys. Astrophys. Fluid Dynam., as accepted
(2004
Perfectly matched layers in transmission lines
The field distribution at the ports of the transmission line structure is computed by applying Maxwell's equations to the structure and solving an eigenvalue problem. The high dimensional sparse system matrix is complex in the presence of losses and Perfectly Matched Layer. A method is presented which preserves sparseness and delivers only the small number of interesting modes out with the smallest attenuation. The modes are found solving a sequence of eigenvalue problems of modified matrices with the aid of the invert mode of the Arnoldi iteration using shifts. A new strategy is described which allows the application of the method, first developed for microwave structures, to optoelectronic devices
A User-Friendly Hybrid Sparse Matrix Class in C++
When implementing functionality which requires sparse matrices, there are
numerous storage formats to choose from, each with advantages and
disadvantages. To achieve good performance, several formats may need to be used
in one program, requiring explicit selection and conversion between the
formats. This can be both tedious and error-prone, especially for non-expert
users. Motivated by this issue, we present a user-friendly sparse matrix class
for the C++ language, with a high-level application programming interface
deliberately similar to the widely used MATLAB language. The class internally
uses two main approaches to achieve efficient execution: (i) a hybrid storage
framework, which automatically and seamlessly switches between three underlying
storage formats (compressed sparse column, coordinate list, Red-Black tree)
depending on which format is best suited for specific operations, and (ii)
template-based meta-programming to automatically detect and optimise execution
of common expression patterns. To facilitate relatively quick conversion of
research code into production environments, the class and its associated
functions provide a suite of essential sparse linear algebra functionality
(eg., arithmetic operations, submatrix manipulation) as well as high-level
functions for sparse eigendecompositions and linear equation solvers. The
latter are achieved by providing easy-to-use abstractions of the low-level
ARPACK and SuperLU libraries. The source code is open and provided under the
permissive Apache 2.0 license, allowing unencumbered use in commercial
products
SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale
<p>Abstract</p> <p>Background</p> <p>An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community.</p> <p>Results</p> <p>SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast <it>Saccharomyces cerevisiae </it>(6,690 sequences).</p> <p>Conclusions</p> <p>Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at <url>http://www.paccanarolab.org/software/scps</url>.</p
- âŚ