
ORIGINAL ARTICLE

On the strong scalability of maritime CFD

J. Hawkes1,2 • G. Vaz2 • A. B. Phillips3 • S. J. Cox1 • S. R. Turnock1

Received: 26 September 2016 / Accepted: 16 May 2017 / Published online: 27 May 2017

� The Author(s) 2017. This article is an open access publication

Abstract Since 2004, supercomputer growth has been

constrained by energy efficiency rather than raw hardware

speeds. To maintain exponential growth of overall com-

puting power, a massive growth in parallelization is under

way. To keep up with these changes, computational fluid

dynamics (CFD) must improve its strong scalability—its

ability to handle lower cells-per-core ratios and achieve

finer-grain parallelization. A maritime-focused, unstruc-

tured, finite-volume code (ReFRESCO) is used to investi-

gate the scalability problems for incompressible, viscous

CFD using two classical test-cases. Existing research sug-

gests that the linear equation-system solver is the main

bottleneck to incompressible codes, due to the stiff Poisson

pressure equation. Here, these results are expanded by

analysing the reasons for this poor scalability. In particular,

a number of alternative linear solvers and preconditioners

are tested to determine if the scalability problem can be

circumvented, including GMRES, Pipelined-GMRES,

Flexible-GMRES and BCGS. Conventional block-wise

preconditioners are tested, along with multi-grid precon-

ditioners and smoothers in various configurations. Mem-

ory-bandwidth constraints and global communication

patterns are found to be the main bottleneck, and no state-

of-the-art solution techniques which solve the strong-scal-

ability problem satisfactorily could be found. There is

significant incentive for more research and development in

this area.

Keywords High-performance computing � Strong
scalability � Software profiling � Linear solvers

1 Introduction

A recent report by Slotnick et al. [28] attempted to create a

‘‘vision’’ of CFD in 2030, identifying some of the areas

which must be improved to allow more widespread and

successful use of CFD. Among these were improved tur-

bulence and separation modelling; better automatic mesh

generation and adaptivity; more capable multi-disciplinary

simulations (for example, coupled CFD and structural

simulations); improved post-processing, particularly of

large simulations; greater accuracy through higher-order

methods; and more practical design optimization. All of

these goals require improvements to the underlying CFD

algorithms—making them more efficient and more scal-

able—particularly considering the major changes in

supercomputer architecture expected in the same era.

Indeed, more scalable numerical methods are one of the

areas highlighted by [28], stating that development has

been stagnant for too long. The particular numerical

methods that require improvement are not clear, and

depend upon the type of CFD code and application.

Here, the strong scalability of CFD is reviewed in detail,

using ReFRESCO. ReFRESCO is an incompressible-flow,

unstructured, finite-volume, SIMPLE-based, segregated

solver specialized for maritime applications; similar in

formulation to many open-source and commercial codes. A

general scalability study of the whole code has been per-

formed (Sect. 4), which shows that the linear equation-

& J. Hawkes

j.hawkes@soton.ac.uk

1 University of Southampton, Boldrewood Campus,

Southampton, United Kingdom

2 Maritiem Research Instituut Nederlands (MARIN),

Wageningen, Netherlands

3 National Oceanography Centre, Southampton, United

Kingdom

123

J Mar Sci Technol (2018) 23:81–93

https://doi.org/10.1007/s00773-017-0457-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00773-017-0457-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00773-017-0457-7&domain=pdf
https://doi.org/10.1007/s00773-017-0457-7

system solver is the bottleneck in incompressible flow

simulations. This study details the reason for their poor

scalability, and shows that there are new problems facing

scalable CFD since earlier literature [11], due to increasing

memory bandwidth issues. Two test cases are used: lid-

driven cavity flow (LDCF) and the KRISO Very Large

Crude Carrier (KVLCC2) [20], each with around 2.67-

million cells—chosen to show the full range of intra-nodal

and inter-nodal scalability bottlenecks on the University of

Southampton supercomputer (Iridis4).

Following this, a variety of other linear solvers and

preconditioners are tested to determine whether the scala-

bility problems can be circumvented (Sect. 5) and provide

a comprehensive overview of the current ‘best’ solvers for

strong scalability. These studies will aid CFD practioners

in choosing suitable solvers and guide developers to find

more scalable solutions. Widely-used solvers such as

GMRES, Flexible-GMRES, BCGS and SOR are tested,

along with state-of-the-art solvers such as Pipelined

GMRES [10] which is designed to improve scalability.

Similarly, multi-grid preconditioners such as Sandia’s ML

[9] could bring a significant improvement when compared

to block-wise preconditioners (such as Block Jacobi) or

simple smoothers (such as SOR).

2 The strong scalability problem

Over the last few decades, growth in supercomputing

power has been exponential, with floating-point-operation

(FLOP) rates doubling approximately every 14 months

[29]. Whilst this growth is relatively constant, the under-

lying architectures which achieve such growth are not.

Until 2004, the speed and electricity consumption of

transistors was governed by Dennard’s Scaling: as tran-

sistors shrank in size, their speed increased linearly and

their electricity consumption dropped quadratically [7].

Unfortunately, the transistors used in modern processors

are so small that electrons are able to ‘leak’ across the

dielectric gates, and voltages must be increased to maintain

stability. This limitation, known as the ‘power wall’, makes

it more efficient for manufacturer’s to provide multiple,

slower cores in place of fewer, faster cores. Figure 1 shows

the exponential growth rate of computing power and Fig. 2

shows how this computing power is provided—in terms of

FLOP-rate-per-core and number of cores. The critical point

in 2004 is clearly visible, where the shift towards a multi-

core (‘Chip-Level Multiprocessing’) architecture occurred.

This trend is relentless, and has lead to supercomputers

with almost 200 cores-per-node. By 2020, it is expected

that the cores-per-node ratio could be as high as 10-thou-

sand; with the fastest supercomputers containing a total of

10- to 100-billion cores. Meanwhile, memory capacity is

growing at an ever-slower rate, limiting the absolute size of

simulations; and memory bandwidth (per core) is

decreasing, creating new issues for CFD algorithms

[16, 19, 27].

It is often regarded that the CFD algorithm benefits from

good ‘weak scalability’ (the ability to maintain computa-

tional efficiency with a fixed cells-per-core ratio), thus

realizing the benefits of supercomputing advances when

the growth in core-count was moderate [3]. Although dif-

ficult to quantify, it can be assumed that the capabilities of

CFD have grown more-or-less in proportion with super-

computing power because of this trait; especially given that

the maximum problem size (limited by total memory) has

more-or-less grown with the number of nodes.

Fig. 1 Total floating-point operation (FLOP) rate of the most

powerful 500 supercomputers in the world, using data from the

Top500 organization [29]. The data shows the benchmark FLOP rate

of the #1 machine, the #500 machine and the sum of all 500 machines

over time. The exponential growth rate corresponds to a doubling

every 13.85 months

Fig. 2 The FLOP rate, FLOP/core ratio and number of cores (average

of the Top500 [29]) over time, normalized to a snapshot in November

1993. Since the advent of chip-level-multiprocessing (CMP) in 2004,

FLOP/core ratio has grown by only a factor of approx. 4, whereas

number of cores has grown by a factor of approx. 64

82 J Mar Sci Technol (2018) 23:81–93

123

The ‘strong scalability’ of CFD—the ability to decrease

the cells-per-core ratio efficiently—is more important in a

massively-parallel era; and is generally poor [3, 6]. By

2020, supercomputers are expected to contain approxi-

mately 3000-times more cores, but the size of CFD simu-

lations can only increase by a factor of �11, thus the

efficient cells-per-core ratio of CFD must drop by a factor

of at least 250.1 Furthermore, in the maritime industry the

majority of state-of-the-art simulations are unsteady com-

putations. Since it is difficult to parallelize the time

domain, greater spatial domain-decomposition is required

to improve CFD capabilities, requiring further improve-

ments to strong scalability.

Whilst both forms of scalability have been investigated

for incompressible CFD, the results are often subjective to

the particular code and hardware, and difficult to general-

ize. In [3] the linear-equation system solver, particularly

for the Poisson pressure equation, is the main bottleneck to

scalability. Culpo [6] reinforces this by considering the

main elements of the linear-equation system solver and

how they could be improved. However, neither paper

investigates the reason for their poor scalability in detail,

and neither considers alternative solver algorithms. Grop-

pet al. [11] provides a good grounding in both these areas,

but is now 15 years old—and the conclusions drawn could

be somewhat outdated due to changes in hardware.

3 Experimental setup using ReFRESCO

In order to conduct scalability experiments, a sample CFD

code (ReFRESCO) is used on two classical test cases. In

order to get information on the run-time of ReFRESCO, the

code is profiled by injecting timers into the code in key

places. The test cases are run across a range of core-counts,

from 1 to 512, on the University of Southampton super-

computer: Iridis4. The various aspects of the experimental

setup are discussed below.

3.1 ReFRESCO

ReFRESCO2 is a viscous-flow CFD code that solves

multiphase, unsteady, incompressible flows for unstruc-

tured meshes [30]. It is complemented by various turbu-

lence, cavitation and volume-fraction models. In many

ways, ReFRESCO represents a general-purpose CFD code,

with state-of-the-art features such as moving, sliding and

deforming grids and automatic grid refinement—but it has

been verified, validated and optimized for numerous mar-

itime industry problems. ReFRESCO is currently being

developed at MARIN (Netherlands) and a number of uni-

versities around the world [2, 8, 18, 24, 26] including the

University of Southampton [12–14].

In ReFRESCO, the governing equations are discretized

in strong-conservation form using a finite-volume approach

with cell-centred collocated variables. Simulations are

parallelized with MPI (Message Passing Interface) and

partitioned using METIS [17]. ReFRESCO is based on the

SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) solver with pressure-weighted interpolation

(PWI) [18].

The SIMPLE algorithm is shown in Fig. 3. The coarsest

loop in the SIMPLE algorithm is responsible for unsteady

time-stepping. Time integration is performed implicitly

with first- or second-order backward schemes. All non-

linearity is tackled in the ‘outer loop’, which is performed

several times per time-step (until satisfactory

convergence).

In each outer loop, a Picard-linearized version of each

transport equation is assembled into a system of linear

equations, based on the discretization of all the equation

terms (time-derivatives, convection, diffusion, source

terms) in the associated mesh. This process creates a sparse

matrix of implicit terms (A) and a vector of explicit terms

(b); which can be solved to find new values for the flow

field (x): Ax ¼ b. Iterative solvers are used to solve for x to

a given convergence tolerance (based on the ‘2-norm of the

residual) in an ‘inner loop’, with typical tolerances between

0.1 and 0.001. ReFRESCO uses PETSc (Portable Extensi-

ble Toolkit for Scientific Computing) [1] for its large range

of linear solvers and preconditioners.

Since each MPI process has its own memory space

and its own portion of the mesh, the updated values for

x along partition boundaries must be shared via MPI

data exchange. The gradient of the flow-field variable

can then be computed using Gauss theorem, and the

updated gradients exchanged across domain boundaries

once again.

These four routines {assembly, solve, exchange and

gradients}, which can be seen in Fig. 3, are the heart of the

SIMPLE algorithm and are the most expensive part of the

solution process. They are also the linchpin of other

SIMPLE-derived algorithms and common alternatives such

as SIMPLEC, SIMPLER and PISO.

In order to observe how these key routines scale,

ReFRESCO has been profiled using Score-P [VI-HPS Acc.

2013]. Score-P is a compile-time wrapper which auto-

matically logs various run-time events, such as function

1 Based on Tianhe-2, the current (January 2016) #1 supercomputer

and conservative estimates of an exascale machine expected in 2020.

Maximum capabilities of CFD are based on trends of total compu-

tational power, doubling every 13.85 months. Realistically, maximum

CFD capabilities are limited by memory capacity which grows even

more slowly [19], thus amplifying the problem.
2 See http://www.refresco.org.

J Mar Sci Technol (2018) 23:81–93 83

123

http://www.refresco.org

calls and durations. It has been carefully filtered such that

only critical functions are measured, and the effect on total

run-time is less than 2%. Score-P can be linked to PAPI

(Performance Application Programming Interface) [4]

which gathers additional information from physical hard-

ware-counters.

Two hardware counters are enabled for these tests. The

first measures floating point operations per second, which

helps to determine whether the processing units are sat-

urated. For an unstructured CFD code this is an unlikely

situation, as the indirect memory access bottlenecks the

processor. Structured-mesh codes are more likely to reach

these limits due to better memory layout and

vectorization.

Hardware counters for pure memory bandwidth are not

available, but level one (L1) cache misses give a good

indication of memory-fetching issues (since a cache miss

must result in a memory or next-level cache transaction).

However, there are two issues. Firstly, the compiler will

often prefetch memory into the cache, resulting in memory

bandwidth usage which is not detected by this hardware

counter. Secondly, an L1 cache-miss will be registered

even when the data resides in L2 or shared cache (which is

still very fast compared to off-chip memory). Despite these

imperfections, it is possible to see certain bottlenecks due

to memory bandwidth, particularly when combined with

other hardware counters or profiling.

Other hardware counters are available (such as L2 cache

misses), but they cannot be enabled at the same time due to

register sizes or competing circuitry.

3.2 Iridis4

ReFRESCO is run on the University of Southampton’s

latest supercomputer. Iridis4 has 750 nodes, consisting of

two Intel Xeon E5-2670 Sandybridge processors (8 cores,

2.6 Ghz), for a total of 12,200 cores. Each 16-core node is

diskless, but is connected to a parallel file system, and has

64GB of memory. The nodes run Red Hat Enterprise Linux

version 6.3. Nodes are grouped into sets of 30, which

communicate via 14 Gbit/s Infiniband. Each of these

groups is connected to a leaf switch, and inter-switch

communication is then via four 10 Gbit/s Infiniband con-

nections to each of the core switches. Management func-

tions are controlled via an ethernet network.

Iridis4 ranked #179 on the Top500 list of November

2013 with a peak performance of 227 TFLOPS [29]. Iridis4

cannot be classified as a next-generation, many-core

machine, with only 16 cores per node. Indeed, it is several

years behind the state-of-the-art. Nonetheless, it should be

able to give sensible insight into the limitations of the CFD

algorithm.

3.3 LDCF and KVLCC2

Two test cases are used in the experiments. The first is a

laminar-flow, canonical, unit-length, three-dimensional lid-

driven cavity flow (LDCF). A uniform structured mesh of

2.68-million cells (1393) is used, and only momentum and

pressure equations are solved. The simulation mimics an

infinite domain, with two cyclic boundary conditions. The

Initial Guess of Flow Values

Outer Loop: Until Convergence

Compute Flow Momentum (x,y,z)

Compute Flow Pressure

Compute Other Flow Variables
(Turbulence, Cavitation, etc.)

Assemble Equation System
Discretization, Eccentricity Corr., Orthogonality Corr.

Solve Equation System
Iteratively solve the linear equation-system

MPI Data Exchange
Update partition boundaries with flow values

Compute Gradients
Using Gauss Theorem

MPI Data Exchange
Update partiion boundaries with flow gradients

A x b

Time-Step Loop: Until Simulation Time

Fig. 3 An overview of the SIMPLE algorithm. Time discretization is

handled by the time-step loop at the coarsest level. Within each time-

step a number of outer loops are performed in order to solve non-

linearity and couple the governing equations. Within each outer loop,

the solutions to the governing equations (momentum, pressure, etc.)

are computed in their uncoupled, linearized, discretized form. The

solution of each equation follows the same five steps as illustrated on

the right

84 J Mar Sci Technol (2018) 23:81–93

123

remaining four boundaries are constrained with Dirichlet

boundary conditions, one of which specifies a tangential,

non-dimensional velocity of 1.

The second test case is the KRISO Very Large Crude

Carrier (KVLCC2) double-body wind-tunnel model [20].

The mesh is a three-dimensional multi-block structured

mesh consisting of 2.67-million cells. A k-x, two-equation
shear stress transport turbulence model is used [22]. The

domain and mesh are shown in Figs. 4 and 5 respectively.

The two test-cases are designed to have a similar

number of cells. The size of the mesh has been chosen to

show the full range of scalability issues. On 512 cores, the

cells-per-core ratio reaches approximiately 5200 which

helps demonstrate the parallel bottlenecks on a large

number of cores; yet the problem is substantial enough to

show memory bandwidth issues on a single node (with

approximately 167k cells-per-core).

In both cases, 400 outer-loops are performed with no

time-stepping, with an inner-loop (linear) relative

convergence tolerance of 0.1 (0.01 and 0.001 later).

Relaxation is applied to all outer-loops to stabilize the non-

linear iterative process. QUICK (Quadratic Upstream

Interpolation for Convective Kinematics) and first-order

upwind schemes are used to discretize the convective terms

of the momentum and turbulence equations respectively.

A GMRES (Generalized Minimal Residual method) solver

is used with a Block Jacobi preconditioner, as in [11].

4 General scalability study

The scalability of the SIMPLE algorithm has been exam-

ined by measuring the run-time of the two test cases as

successively more cores are added to the simulation. A

scalability factor S can be defined as S ¼ T1=TC where TC
is the wall-time using C cores. Ideal scalability is when

S ¼ C, although this is rarely achieved. This scalability

factor can be found for various subroutines in the SIMPLE

algorithm in order to identify potential bottlenecks. Here,

the scalability factor is normalized to serial operation

(C ¼ 1), and is often called a parallel ‘speed-up’ factor for

this reason.

Figure 6a, b show the scalability of the code as the

number of cores increases. The embedded bar charts show

absolute core-hours (C � TC, which would ideally remain

constant) in serial operation (C ¼ 1), single-node operation

(C ¼ 16) and highly-parallel operation (C ¼ 512). Total

core-hours is shown with black bars; the composite parts

are coloured and keyed with respect to the enclosing

scalability plot. This shows the denormalized costs of

various routines; and also highlights where the scalability

bottlenecks occur—at the intra-nodal or inter-nodal level.

The results from the hardware counters are shown in Fig. 7,

for the LDCF test case.

Total scalability is poor overall, suffering significantly

on just 16 cores due to intra-nodal bottlenecks and

worsening to the point at which almost no speed-up is

gained from adding additional nodes. On 512 cores the

parallel speed-up is just 128 (KVLCC2) and 100 (LDCF).

This scalability is similar to other codes, such as Open-

FOAM [6, 25], STAR-CCM? [5] or Ansys Fluent [15]

although some published results are normalized to nodal

performance (i.e. C ¼ 16, which hides intra-nodal ineffi-

ciency and gives overly-optimistic results) or are trun-

cated (hiding inter-nodal bottlenecks). Exact comparisons

between various codes on identical hardware were not

feasible, but only minor differences are expected since all

of these packages are based off the same algorithm and

share similar implementations. Major differences should

only be observed if coupled solvers or inferior partition-

ing schemes are used.

Fig. 4 The domain used for the KVLCC2 double-body wind-tunnel

simulation. Symmetry boundary conditions are applied at the

waterplane, but port- and starboard-sides of the centre-line are both

simulated

Fig. 5 The KVLCC2 mesh is a multi-block structured mesh

consisting of 2.67-million cells

J Mar Sci Technol (2018) 23:81–93 85

123

a b

c d

Fig. 6 Scalability of the code, and the profiled routines within, as the

number of cores increases. These results used GMRES as the linear

solver with a Block Jacobi preconditioner, and an inner-loop relative

convergence tolerance of 0.1. a KVLCC2 breakdown by routine,

b LDCF breakdown by routine, c KVLCC2 breakdown by equation,

d LDCF breakdown by equation

Fig. 7 An example of the information gleaned from PAPI hardware counters. For all routines in the LDCF test case, the number of first-level

(L1) cache-misses per thousand clock cycles (left) and the total floating-point operation rate (FLOPs) (right) are shown

86 J Mar Sci Technol (2018) 23:81–93

123

The routines outlined earlier assembly, solve, exchange

and gradients, for each equation in each outer loop, account

for the large majority of overall run-time. The remaining

time (other) is spent (mostly) in one-off functions such as

file IO or MPI initialization, thus is subjective to the length

of the simulation and amount of IO required. These other

routines may also increase significantly if additional fea-

tures such as moving, deforming and adapative grids are

used—again, this is highly subjective.

The assembly and gradients routines scale favourably,

reaching almost 90% parallel efficiency. The high, and

increasing, cache-miss rate of the gradients routines is

curious, as it does not seem to affect performance (FLOP

rate is maintained). It is likely that the data required resides

in L2 or shared-cache, rather than off-chip memory, so the

impact of these L1 cache misses is much lower.

The data exchange routines are not visible in the scal-

ability plots, because normalizing against (T1 � 0) gives

negative scalability (no communications are required in

serial operation). In reality, these routines scale reason-

ably—as the number of cores increases the size of the

messages become smaller, and these messages can be sent

concurrently. With inadequate load-balancing these data

exchanges can become costly, due to the implicit syn-

chronization of MPI processes. However, the results show

that these communications account for a small proportion

of overall run-time.

As consistent with literature, the solve routines have

poor scaling and are a major contributor to total run-time,

thus are the main concern for scalability. The hardware

performance counters show a high cache-miss rate between

16 and 128 cores, corresponding to saturated memory

bandwidth at the intra-nodal level.

Memory-bandwidth-per-node has been growing at

approximately half the rate of processing-power-per-node

leading to today’s problems with memory bandwidth [27].

In [11], conducted in 2000 on single-core processors,

memory-bandwidth problems were apparent but not as

concerning—changes in architecture over the last decade

have made memory bandwidth issues more critical.

Beyond 128 cores, cache misses in the solve routines

become less frequent but FLOP rate continues to decrease and

scalability worsens. This is due to the oft-observed global

communication bottleneck. An illustration of a single

GMRES iteration is shown in Fig. 8. This pattern is compu-

tationally similar to most Krylov Subspace (KSP) solvers,

including conjugate gradient methods—although some dif-

ferences will be mentioned in Sect. 5. In particular, two dis-

tinct communication routines are required by KSP solvers.

Firstly, sparse-matrix-vector-multiplication (SpMV)

requires concurrent neighbour-to-neighbour communica-

tion as in the data exchange routines—scaling reasonably

well.

Secondly, two global reduction-broadcast routines are

required for orthogonalization and normalization of the

Krylov vectors. These require a hierarchical global com-

munication pattern which scales poorly, usually with

TC/
s

log2ðCÞ (where the proportionality factor depends

primarily on network latency). These communication pat-

terns are blocking, and cannot easily be overlapped or

hidden by other useful work. On a large number of cores

spread over an inter-nodal network with relatively high

latency, these global communications become a bottleneck

to scalability of the linear solvers. Whilst most routines

reduce in wall-time as more cores are added (with less-

than-ideal efficiency), wall-time for global communica-

tions increases, as each time the number of cores doubles,

an extra set of messages must be sent (incurring the latency

cost of the network).

These global communications create a scalability bot-

tleneck when a high number of nodes are used, and has

been well-documented in the literature [6]. The memory-

bandwidth problems previously noted are often over-

looked, but are an important bottleneck to overcome for

next-generation supercomputing.

Figure 6c, d shows the breakdown of time spent in the

various equations (pressure, momentum, turbulence). In

both cases, the single pressure equation took considerable

time to compute—similar to all three momentum equations

combined. In incompressible-flow simulations the pressure

equation is much harder to solve than other transport

equations, due to its elliptic Poisson form.

This can be illustrated by considering the spectral radius

(maximum eigenvalue) of the Jacobi iteration matrix:

qðD�1ðLþ UÞÞ, where D, L and U are the diagonal, lower

and upper triangles of A respectively. The rate of conver-

gence of the Jacobi method is proportional to the spectral

radius, and must be less than unity for convergence. Using

SpMV local dot reduct/bcast axpy reduct/bcast scale

Fig. 8 An illustrative trace of a GMRES iteration on 8 cores (not to

scale). Note the local neighbour-to-neighbour communications per-

formed asynchronously in the SpMV routine, and the two reduction-

broadcast patterns. There are many variations of the reduction-

broadcast algorithm which cannot be illustrated clearly. The most

common is the ‘butterfly’ algorithm which completes in log2ðCÞ-time,

combining the reduction and broadcast into a single hierarchy of

latency-bound messages. As the number of cores increases, this

reduction-broadcast takes longer, whilst other routines take less time

J Mar Sci Technol (2018) 23:81–93 87

123

a smaller version of the KVLCC2 mesh (317k cells), the

spectral radius of the KVLCC2 pressure equation was

[0.9999, compared to 0.8450 for the momentum equation

and 0.5888 for the turbulence equation.3 Thus it would take

at least 1700-times more iterations of the pressure equation

to reach the same convergence as in the momentum

equation, if using a naı̈ve Jacobi solver. The pressure

equation also gets stiffer as the mesh gets larger, ampli-

fying the problem. KSP methods, particularly with good

preconditioning, close this gap considerably, but there is

still a large difference between the pressure equation and

other transport Eq. (14).

The above results were performed using an inner-loop

(linear) relative convergence tolerance of 0.1 for all

equations. The results were repeated using a tolerance of

0.01 and 0.001 (see Fig. 9). Note the significant increase in

wall-time, entirely due to the solve routines for the pressure

equation.

These results were also re-run using alternative con-

vective discretization schemes [12], which had no signifi-

cant effect on scalability. Higher order methods, such as

QUICK, apply their high-order terms explicitly (into the b

vector); with only the low-order terms affecting the matrix

(A). It is suggested that higher-order discretization will be

a prominent development in the next decade [28], so this is

a promising result. However, there are difficulties when

going to even higher-order methods, and this remains an

area of active linear-solver development [23].

A fully unstructured mesh was also tested using the

KVLCC2 test case [12]. The unstructured mesh was much

a b

c d

Fig. 9 Scalability of the code with an inner-loop convergence

tolerance of a, c 0.01 and b, d 0.001 for the KVLCC2 test case as in

Fig. 6, showing scalability of a, b the various routines and c, d) the
various equations, using GMRES with a Block Jacobi preconditioner.

The results show poor scaling of the solve routines, which particularly

influences the cost of the pressure equation. Similar results were

obtained for the LDCF test case

3 The spectral radii were found by extracting the matrices from the

fifth outer loop in a separate batch of simulations. The maximum

eigenvalue, and thus spectral radius, of the corresponding Jacobi

iteration matrix could be found using ARPACK routines [21] based

on Arnoldi iterative methods. The size of the matrix that could be

tested was limited by memory capacity.

88 J Mar Sci Technol (2018) 23:81–93

123

larger (12.5 m) and did not directly match a structured

mesh, so the scalabiliy of two structured meshes was

interpolated (10.0 and 15.8 m). The interpolated scalability

of the structured meshes was virtually identical to the

unstructured mesh. Note that ReFRESCO treats all meshes

as unstructured meshes, in terms of data structure—and

therefore does not take advantage of structured meshes and

structured memory layout.

This preliminary study concludes that in their basic

form, the linear equation-system solvers are the primary

bottleneck to strong scalability of CFD, in agreement with

recent literature. In particular, detailed profiling of

ReFRESCO has revealed that memory bandwidth con-

tention and expensive hierarchical communication patterns

are the main bottleneck. However, the scalability may be

significantly altered if different solvers and preconditioners

are used.

5 Effect of linear solvers and preconditioners
on scalability

Thus far, the results have used a basic GMRES solver with

a Block Jacobi preconditioner. More modern solvers or

preconditioners could provide very different scalability

characteristics. For example, a powerful preconditioner

could reduce the number of KSP iterations (and global

communications) required; but may be unscalable in itself

due to communication or high setup costs. CFD is unique

in that a solution to the linear system is only approximated,

since the solution to the linear system is a small part of a

non-linear system. Compared to applications which require

machine accuracy of linear systems, CFD is very sensitive

to start-up (initialization of linear solvers, memory allo-

cation, etc.) costs which may rule out the most advanced

solvers or preconditioners. Indeed, it may be that simpler

preconditioners than Block Jacobi provide better scaling. In

this section, the scalability of the linear solvers will be

tested. Following this, a number of preconditioning tech-

niques will be investigated—including block precondi-

tioning techniques, multi-grid methods and simple

smoothers.

5.1 Solvers

A recent improvement to GMRES has been developed, so-

called Pipelined GMRES (PGMRES) [10], which removes

one of the global communications from the standard

GMRES iteration—replacing it with a correction routine,

and allowing the remaining reduction to be overlapped

with other useful work. The scalability of GMRES and

PGMRES are compared in Fig. 10. Flexible GMRES

(FGMRES) has been tested, as it allows a wider range of

preconditioning techniques to be used later. A Bi-Conju-

gate Gradient Squared (BCGS) method has also been tes-

ted. All of the KSP methods use Block Jacobi as a

preconditioner. A successive over-relaxation (SOR)

method is also shown, demonstrating the differences

between KSP and non-KSP methods.

GMRES performs as previously noted, with poor per-

formance at the intra-nodal level due to memory-band-

width contention and poor performance on a large number

of cores due to global communication patterns. FGMRES

exhibits slightly worse inter-nodal scalability than

GMRES. PGMRES scales worse in the memory-bandwidth

zone than either GMRES or FGMRES, but the gradient of

the scalability factor, dS/dC, between 256 and 512 cores is

approximately double that of GMRES—consistent with the

algorithmic improvement (half the number of global

communications). Overall, the wall-time gains from

PGMRES on 512 cores are minimal.

BCGS gives strong numerical performance in serial

operation and similar memory-limited scaling at the intra-

nodal level. BCGS requires four global communications

per iteration, thus inter-nodal scaling suffers.

As expected, SOR performs much worse than the KSP

methods, but has far superior scalability. SOR is limited by

memory bandwidth briefly, but quickly recovers this as the

simulation fits into cache. The SOR algorithm still uses one

global communication pattern to compute a residual at the

end of each iteration; thus its final gradient is similar to that

of PGMRES. Residuals could be calculated less frequently

to improve scalability of SOR considerably.

ReFRESCO also has access to a large range of pre-

conditioners through its use of PETSc, many of which have

been tested as follows.

Fig. 10 Scalability of the solve routines in the pressure equation,

using the KVLCC2 test case with inner-loop convergence tolerance

set to 0.1. The results compare three Krylov Subspace solvers and a

Successive Over-Relaxation (SOR) algorithm operating as a Block

Gauss-Seidel method. Note the exponential scale of the inset core-

hours chart

J Mar Sci Technol (2018) 23:81–93 89

123

5.2 Block preconditioners

The Block Jacobi algorithm used thus far implements a

block-wise Incomplete LU (ILU) factorization with zero-

level fill, and sets a high benchmark for other precondi-

tioners. ILU(0) is performed on each MPI process’s local

portion of the matrix, leading to an interesting problem:

convergence deteriorates as the number of cores increases,

as the local portion becomes less significant to the global

solution.4 An Additive Schwarz Method (ASM) was tested,

with the same block-wise ILU(0) solver. ASM is similar to

Block Jacobi, but allows communication between neigh-

bouring blocks to augment the process. The results are

shown in Fig. 11. The differences between Block Jacobi

and ASM were small, with ASM fairing worse overall due

to additional communications. ILU(0), ILU(1) and ILU(2)

were also tested as preconditioners in their own right, with

poor results in all regards (not shown).

5.3 Multi-grid preconditioners

For elliptic equations (such as the pressure equation) multi-

grid methods such as ML [9] should be very powerful.

Multi-grid methods cover a broad category, with multiple

formulations and many opportunities for fine-tuning. They

are all based on the principle that multiple scales of the

problem can be solved efficiently by solving coarse-grid

approximations to the actual (fine) grid. The coarsest grid

will have a much lower spectral radius than the finest,

allowing low-frequency errors to be reduced quickly.

Meanwhile, the fine grid solves high-frequency errors, and

the results are combined. Since each grid is much easier to

solve, ‘smoothers’ are used instead of complete solvers at

each level. A typical smoother may just be one iteration of

SOR or an ILU factorization, for example, although the

coarsest grid is often solved directly. There are many

variations of multigrid methods: different methods for

coarse-grid construction; different methods for coarse-grid

interpolation; various methods of communicating (or not)

on coarse grids; and so on. All of these variations will have

a large effect on scalability.

ML is a state-of-the-art smoothed-aggregation algebraic

multi-grid method from Sandia’s National Labaratories,

and is one of the most commonly-used multigrid packages

[9]. ML automatically creates coarse grids until a minimum

size is reached using a smoothed aggregation process. For

the KVLCC2 test case, ML automatically decided to create

six grids when running on one core, and four grids on 512

cores. FGMRES was necessary to accommodate the multi-

grid preconditioner, because the preconditioning matrix

could change between iterations.

The results shown in Fig. 11 show that ML is highly

capable at the intra-nodal level. It exhibits strong serial

performance and moderate scaling to 16 cores—better than

Block Jacobi. Unfortunately it rapidly breaks down beyond

a

b

c

Fig. 11 Scalability of the solve routines in the pressure equation,

using the KVLCC2 test case with inner-loop convergence tolerance

set to a 0.1, b 0.01 and c 0.001. The results compare different

preconditioners including Block Jacobi, Additive Schwarz (ASM),

SOR smoothing (SORx10) and a multi-grid method (ML). FGMRES

is used as the solver to allow more flexible preconditioning. Note the

exponential scale of the inset core-hours chart

4 Indeed, this made it difficult to distinguish between convergence-

loss-problems and global-communication-problems in the previous

section. Profiling of an unpreconditioned GMRES reveals that globals

communications are the leading problem. However, the number of

iterations required with Block Jacobi increased when a tolerance of

0.001 was requested.

90 J Mar Sci Technol (2018) 23:81–93

123

64 cores where global communications dominate. It was

suspected that this was due to the direct solver used on the

coarsest grid, but replacing it with a smoother (5 iterations

of SOR) resulted in worse scalability. Another recom-

mendation is to restrict the number of levels created by

ML, thus reducing expensive start-up costs. Restricting ML

to three levels worsened the scalability; and two levels (not

shown) gave similar results. It is expected that less

sophisticated multigrid methods (such as non-smoothed

aggregation) may provide better results for CFD, since

start-up is cheaper. It is also possible to re-use the coarse-

grid mappings between non-linear iterations, which would

improve the results shown here. Furthermore, the multigrid

method could be used as a standalone solver rather than a

preconditioner, omitting FGMRES entirely. Clearly a

much deeper study of multi-grid methods is required as

they certainly cannot be used as a black-box for scalable

CFD.

5.4 Smoothing as a preconditioner

Finally, it is worth considering a much simpler precondi-

tioner than even Block Jacobi. Instead of preconditioning

in the classic sense, a smoother can be used before the main

solver (FGMRES). Ten iterations of SOR as a smoother

was optimal (compared to 1, 100 or 1000). Although it

performed worse than Block Jacobi in serial operation,

where Block Jacobi has good convergence, it was able to

utilize the super-linear scalability as noted in Sect. 4 due to

caching of memory, thus providing excellent scalability.

Since a fixed number of smoother iterations were per-

formed, residual computation in the SOR algorithm was

unnecessary, improving scalability further. This combina-

tion has minimal setup costs, since SOR requires no

additional memory or pre-computation, so could be a

viable option for scalable CFD. However, the solver is still

unavoidably limited by memory bandwidth contention, and

global reductions from the overruling KSP solver. Fur-

thermore, the numerical performance is not good, so it is

only competitive on a large number of cores.

This section has looked at various linear solver and

preconditioners. The most promising result was from a

SOR smoother instead of a classical preconditioner.

Although it was the slowest configuration for serial com-

putation, superior scaling meant that it was often the best

performer at C ¼ 512. A multi-grid preconditioner was

tested, which performed well on a low number of cores, but

had poor scaling. A more detailed study of multi-grid

preconditioning may yield better results. A more scalable

version of GMRES was also tested (Pipelined GMRES)

with mixed results—global communication problems were

halved; but at the cost of more memory-bandwidth

problems.

Overall, the best setup required using 10 iterations of

SOR as a smoother/preconditioner. The initial study is re-

illustrated using this configuration in Fig. 12. Inter-nodal

scaling is significantly improved (compared to Fig. 6a),

which is encouraging, but parallel efficiency is still poor

and global communications are still limiting. Overall

wall-time on 512 cores has been improved by approxi-

mately 30%, but with stricter convergence tolerances

these gains are lost due to the poor numerical properties

of SOR.

6 Conclusions

The main causes of inefficiency and poor scalability of the

SIMPLE method have been analyzed by profiling the

performance of a state-of-the-art CFD code from 1 to 512

cores. The results show that the main bottleneck is the

linear equation-system solvers, particularly for the Poisson

pressure equation. The main problem with the linear

equation-system solvers is the large amount of expensive,

unscalable global communications that are performed.

Profiling with hardware counters has also revealed further

problems at the intra-nodal level due to memory-bandwidth

contention.

Experiments were performed in order to measure per-

formance differences between various state-of-the-art

linear equation-system solvers and preconditioners.

Recent developments such as a ‘pipelined’ version of

GMRES showed improved inter-nodal scalability but gave

worse absolute speed and intra-nodal scalability—overall

giving only a minor performance increase. Multigrid

methods offer some hope, but their performance is

nuanced and difficult to predict. The results showed that

Fig. 12 Scalability of the code for the KVLCC2 test case, and the

profiled routines within, as the number of cores increases. These

results used FGMRES with 10 iterations of SOR as a smoother, with

an inner-loop relative convergence tolerance of 0.1. Similar results

were found for the LDCF test case

J Mar Sci Technol (2018) 23:81–93 91

123

multigrid preconditioners were able to offer better abso-

lute speed, but did not scale as well as simpler precon-

ditioners such as Block Jacobi. Depending on the

convergence tolerance of the linear equation system,

simple smoothers often gave the best performance.

Replacing the classical Block Jacobi preconditioner with

ten iterations of Successive Overrelaxtion improved

overall wall-time on 512 cores by 30%.

By 2020, supercomputers are expected to be 3000-times

more parallel [19], with total power (and practical simu-

lation size) growing by a factor of just �11. Based on these

hardware predictions, the cells-per-core ratio must drop by

a factor of at least 250 in order to maintain a practical

simulation time. Today, a practical simulation of 50-mil-

lion elements, using 512 cores of Iridis4, would achieve a

cells-per-core ratio of approximately 100-thousand.

Dividing this by 250 gives a predicted cells-per-core ratio

of just 391. The results have shown that scalability at 5200

cells-per-core is already poor, with a maximum parallel

efficiency of 25–50%. Beyond 512 cores, negative scala-

bility is likely, with simulation time increasing as more

cores are added. With the current state of the CFD algo-

rithm, extrapolating to less than 500 cells-per-core is

almost inconceivable.

There are currently developments to improve on the

presented SOR results using ‘chaotic’ iterative methods,

which provide even better scalability by removing the

implicit synchronization in the sparse-matrix-vector

communications; improving cache-use at the intra-nodal

level; and slightly improving convergence rates. These

chaotic methods could also be used to accelerate multi-

grid methods [13, 14]. Regardless of the specific methods,

more research is needed to carry incompressible CFD

codes into the next era of supercomputing, where many-

core machines (including GPU or co-processor architec-

tures) will be commonplace. Minor improvements can be

expected from alternative software models (such as hybrid

parallelization), but significant changes are required at the

algorithmic level to keep up with rapidly-evolving

hardware.

Acknowledgements Over 3000 simulations have been performed to

obtain the results presented herein. The authors acknowledge the use

of the IRIDIS High Performance Computing Facility, and associated

support services at the University of Southampton, in the completion

of this work. The authors would also like to thank C.M. Klaij

(MARIN) for his guidance and expertise.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Balay S, Abhyankar S, Adams MF, Brown J, Brune P,

Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley

MG, McInnes LC, Rupp K, Smith BF, Zhang H (2013) PETSc

Users Manual. Tech. Rep. ANL-95/11 - Revision 3.4, Argonne

National Laboratory, http://www.mcs.anl.gov/petsc

2. Bandringa H, Verstappen R, Wubbs F, Klaij C, Ploeg A (2012)

On novel simulation methods for complex flows in maritime

applications, Numerical Towing Tank Symposium (NUTTS).

Cortona

3. Bhushan S, Carrica P, Yang J, Stern F (2011) Scalability studies

and large grid computations for surface combatant using

CFDShip-Iowa. IJHPCA 25(4):466–487

4. Browne S, Dongarra J, Garner N, Ho G, Mucci P (2000) A

portable programming interface for performance evaluation on

modern processors. Int J High Perform Comput Appl

14(3):189–204. doi:10.1177/109434200001400303

5. CD-Adapco (2010) Star-CCM? Performance Benchmark and

Profiling, HPC Advisory Council (Best Practices)

6. Culpo M (2011) Current bottlenecks in the scalability of open-

FOAM on massively parallel clusters. Tech. rep, Partnership for

Advanced Computing in Europe

7. Dennard R, Gaensslen F, Rideout V, Bassous E, Leblanc A

(1999) Design of ion-implanted MOSFET’s with very small

physical dimensions. Proc IEEE 87(4):668–678

8. Eca L, Hoekstra M (2012) Verification and validation for marine

applications of CFD. In: 29th Symposium on Naval Hydrody-

namics. Gothenburg

9. Gee M, Siefert C, Hu J, Tuminaro R, Sala M (2006) ML 5.0

Smoothed Aggregation User’s Guide. Tech. Rep. SAND2006-

2649, Sandia National Laboratories, Albuquerque

10. Ghysels P, Ashby TJ, Meerbergen K, Vanroose W (2013) Hiding

global communication latency in the GMRES algorithm on

massively parallel machines. J Sci Comput 35(1):48–71

11. Gropp W, Kaushik D, Keyes D, Smith B (2000) Analyzing the

parallel scalability of an implicit unstructured mesh CFD code.

In: Valero M, Prasanna V, Vajapeyam S (eds) High performance

computing HiPC 2000. Lecture notes in computer science.

Springer, Berlin Heidelberg, pp 395–404

12. Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz G (2014a)

Performance Analysis Of Massively-Parallel Computational

Fluid Dynamics. In: The 11th International Conference on

Hydrodynamics (ICHD), Singapore

13. Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz G (2014b)

Potential of Chaotic Iterative Solvers for CFD. In: The 17th

Numerical Towing Tank Symposium (NuTTS 2014), Marstrand

14. Hawkes J, Turnock SR, Cox SJ, Phillips AB, Vaz G (2015)

Chaotic Linear Equation-System Solvers for Unsteady CFD. In:

The 6th International Conference on Computational Methods in

Marine Engineering (MARINE 2015), Rome

15. Hewlett-Packard Development Company (2014) Scalability of

ANSYS 15.0 Applications and Hardware Selection. Tech. rep

16. Horst S (2013) Why We Need Exascale And Why We Won’t Get

There By 2020. In: Optical Interconnects Conference, Santa Fe

17. Karypis G (2014) METIS: serial graph partitioning and fill-re-

ducing matrix ordering, v5.1.0. Department of computer science

and engineering, University of Minnesota, Minnesota. http://

glaros.dtc.umn.edu/gkhome/fetch/papers/mlSIAMSC99.pdf

18. Klaij C, Vuik C (2013) Simple-type preconditioners for cell-

centered, collocated, finite volume discretization of incompress-

ible reynolds-averaged Navier-Stokes equations. Int J Numer

Methods Fluids 71(7):830–849

19. Kogge P, Bergman K, Borkar S, Campbell D, Carlson W, Dally

W, Denneau M, Franzon P, Harrod W, Hill K, Hiller J, Karp S,

92 J Mar Sci Technol (2018) 23:81–93

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1177/109434200001400303
http://glaros.dtc.umn.edu/gkhome/fetch/papers/mlSIAMSC99.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/papers/mlSIAMSC99.pdf

Keckler S, Klein D, Lucas R, Richards M, Scarpelli A, Scott S,

Snavely A, Sterling T, Williams S, Yelick K (2008) ExaScale

computing study: technology challenges in achieving exascale

systems, DARPA IPTO

20. Lee S, Kim H, Kim W, Van S (2003) Wind tunnel tests on flow

characteristics of the KRISO 3,600 TEU container ship and 300K

VLCC double-deck ship models. J Ship Res 47(1):24–38

21. Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK Users’

Guide: solution of large-scale eigenvalue problems by implicitely

restarted Arnoldi methods. SIAM, Philadelphia

22. Menter F, Kuntz M, Langtry R (2003) Ten Years of Industrial

Experience with the SST Turbulence Model. In: Turbulence, Heat

and Mass Transfer 4, Antalya

23. Olson LN, Schroder JB (2011) Smoothed aggregation multigrid

solvers for high-order discontinuous Galerkin methods for elliptic

problems. J Comput Phys 230(18):6959–6976

24. Pereira F, Eca L, Vaz G (2013) On the order of grid convergence

of the hybrid convection scheme for RANS codes. In: proceed-

ings of CMNI, Bilbao, Spain

25. Pringle G (2010) Porting OpenFOAM to HECToR. The

University of Edinburgh, EPCC

26. Rosetti G, Vaz G, Fujarra A (2012) URANS calculations for

smooth circular cylinder flow in a wide range of Reynolds

Numbers: solution verification and validation. J Fluids Eng

134(12):121103

27. Shalf J (2013) The evolution of programming models in response

to energy efficiency constraints. In: Oklahoma Supercomputing

Symposium, Norman

28. Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie

E, Mavriplis D (2014) CFD Vision 2030 Study: a path to revo-

lutionary computational aerosciences. Tech. Rep. March, NASA

Langley Research Center, Hampton http://www.ntrs.nasa.gov/

search.jsp?R=20140003093

29. Top 500 List (Acc. 2013) http://www.top500.org

30. Vaz G, Jaouen F, Hoekstra M (2009) Free-surface viscous flow

computations: validation of URANS code FRESCO. In: 28th

International Conference on Ocean, Offshore and Arctic Engi-

neering (OMAE), Honolulu

31. VI-HPS, Score-P, v123 (Acc. 2013) http://www.vi-hps.org/pro

jects/score-p

J Mar Sci Technol (2018) 23:81–93 93

123

http://www.ntrs.nasa.gov/search.jsp?R=20140003093
http://www.ntrs.nasa.gov/search.jsp?R=20140003093
http://www.top500.org
http://www.vi-hps.org/projects/score-p
http://www.vi-hps.org/projects/score-p

	On the strong scalability of maritime CFD
	Abstract
	Introduction
	The strong scalability problem
	Experimental setup using ReFRESCO
	ReFRESCO
	Iridis4
	LDCF and KVLCC2

	General scalability study
	Effect of linear solvers and preconditioners on scalability
	Solvers
	Block preconditioners
	Multi-grid preconditioners
	Smoothing as a preconditioner

	Conclusions
	Acknowledgements
	References

