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Abstract. When implementing functionality which requires sparse matrices,
there are numerous storage formats to choose from, each with advantages and
disadvantages. To achieve good performance, several formats may need to be
used in one program, requiring explicit selection and conversion between the for-
mats. This can be both tedious and error-prone, especially for non-expert users.
Motivated by this issue, we present a user-friendly sparse matrix class for the
C++ language, with a high-level application programming interface deliberately
similar to the widely used MATLAB language. The class internally uses two
main approaches to achieve efficient execution: (i) a hybrid storage framework,
which automatically and seamlessly switches between three underlying storage
formats (compressed sparse column, coordinate list, Red-Black tree) depending
on which format is best suited for specific operations, and (ii) template-based
meta-programming to automatically detect and optimise execution of common
expression patterns. To facilitate relatively quick conversion of research code into
production environments, the class and its associated functions provide a suite of
essential sparse linear algebra functionality (eg., arithmetic operations, submatrix
manipulation) as well as high-level functions for sparse eigendecompositions and
linear equation solvers. The latter are achieved by providing easy-to-use abstrac-
tions of the low-level ARPACK and SuperLU libraries. The source code is open
and provided under the permissive Apache 2.0 license, allowing unencumbered
use in commercial products.
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1 Introduction
Modern scientific computing often requires working with data so large it cannot fully fit
in working memory. In many cases, the data can be represented as sparse, allowing users
to work with matrices of extreme size with few nonzero elements. However, converting
code from using dense matrices to using sparse matrices is not always straightforward.

Existing open-source frameworks may provide several separate sparse matrix
classes, each with their own data storage format. For instance, SciPy [10] has 7
sparse matrix classes: bsr matrix, coo matrix, csc matrix, csr matrix, dia matrix,
dok matrix, and lil matrix. Each storage format is best suited for efficient execution of
a specific set of operations (eg., matrix multiplication vs. incremental matrix construc-
tion). Other frameworks may provide only one sparse matrix class, with severe runtime
penalties if it is not used in the right way. This can be challenging and bewildering
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for users who simply want to create and use sparse matrices, and do not have the ex-
pertise (or desire) to understand the advantages and disadvantages of each format. To
achieve good performance, several formats may need to be used in one program, re-
quiring explicit selection and conversion between the formats. This plurality of sparse
matrix classes complicates the programming task, increases the likelihood of bugs, and
adds to the maintenance burden.

Motivated by the above issues, we present a user-friendly sparse matrix class for the
C++ language, with a high-level application programming interface (function syntax)
that is deliberately similar to MATLAB. The sparse matrix class uses a hybrid storage
framework, which automatically and seamlessly switches between three data storage
formats, depending on which format is best suited for specific operations: (i) Com-
pressed Sparse Column (CSC), used for efficient fundamental arithmetic operations
such as matrix multiplication and addition, as well as efficient reading of individual el-
ements; (ii) Co-Ordinate List (COO), used for facilitating operations involving bulk co-
ordinate transformations; (iii) Red-Black Tree (RBT), used for both robust and efficient
incremental construction of sparse matrices (ie., construction via setting individual ele-
ments one-by-one, not necessarily in order). To further promote efficient execution, the
class exploits C++ features such as template meta-programming to provide a compile-
time expression evaluator, which can automatically detect and optimise common math-
ematical expression patterns.

The sparse matrix class provides an intuitive interface that is very close to a typical
dense matrix API; this can help with rapid transition of dense-specific code to sparse-
specific code. In addition, we demonstrate that the overhead of the hybrid format is
minimal, and that the format is able to choose the optimal representation for a variety
of sparse linear algebra tasks. This makes the format and implementation suitable for
real-world prototyping and production usage.

Although there are many other sparse matrix implementations in existence, to our
knowledge ours is the first to offer a unified interface with automatic format switching
under the hood. Most toolkits are limited to either a single format or multiple formats
the user must manually convert between. As mentioned earlier, SciPy contains no fewer
than seven formats, and the comprehensive SPARSKIT package [12] contains 16. In
these toolkits the user must manually convert between formats. On the other hand, both
MATLAB and GNU Octave [5] contain sparse matrix implementations, but they supply
only the CSC format, meaning that users must write their code in special ways to ensure
its efficiency [9].

The source code for the sparse matrix class and its associated functions is included
in recent releases of the cross-platform and open-source Armadillo linear algebra li-
brary [13], available from http://arma.sourceforge.net. The code is provided under
the permissive Apache 2.0 license [11], allowing unencumbered use in commercial
products.

We continue the paper as follows. In Section 2 we overview the functionality pro-
vided by the sparse matrix class and its associated functions. In Section 3 we briefly
describe the underlying storage formats used by the class, and the tasks that each of the
formats is best suited for. Section 4 provides an empirical evaluation showing the per-
formance of the hybrid storage framework in relation to the underlying storage formats.
The salient points and avenues for further exploration are summarised in Section 5.

http://arma.sourceforge.net


2 Functionality
To allow prototyping directly in C++ as well as to facilitate relatively quick conversion
of research code into production environments, the sparse matrix class and its associated
functions provide a user-friendly suite of essential sparse linear algebra functionality,
including fundamental operations such as addition, matrix multiplication and submatrix
manipulation. Various sparse eigendecompositions and linear equation solvers are also
provided. C++ language features such as overloading of operators (eg., * and +) [14] are
exploited to allow mathematical operations with matrices to be expressed in a concise
and easy-to-read manner. For instance, given sparse matrices A, B, and C, a mathematical
expression such as

D = 1
2(A + B) · CT

can be written directly in C++ as

sp mat D = 0.5 * (A + B) * C.t();

Low-level details such as memory management are hidden, allowing the user to
concentrate effort on mathematical details. Table 1 lists a subset of the available func-
tionality for the sparse matrix class, sp mat.

The sparse matrix class uses a delayed evaluation approach, allowing several oper-
ations to be combined to reduce the amount of computation and/or temporary objects.
In contrast to brute-force evaluations, delayed evaluation can provide considerable per-
formance improvements as well as reduced memory usage. The delayed evaluation ma-
chinery is accomplished through template meta-programming [15], where a type-based
signature of a set of consecutive mathematical operations is automatically constructed.
The C++ compiler is then induced to detect common expression subpatterns at com-
pile time, and selects the corresponding optimised implementations. For example, in
the expression trace(A.t() * B), the explicit transpose and time-consuming matrix mul-
tiplication are omitted; only the diagonal elements of A.t() * B are accumulated.

Sparse eigendecompositions and linear equation solutions are accomplished
through integration with low-level routines in the de facto standard ARPACK [7] and
SuperLU libraries [8]. The resultant high-level functions automatically take care of the
cumbersome and error-prone low-level management required with these libraries.

3 Underlying Sparse Storage Formats
The three underlying storage formats (CSC, COO, RBT) were chosen so that the sparse
matrix class can achieve overall efficient execution of the following five main use cases:
(i) incremental construction of sparse matrices via quasi-ordered insertion of elements,
where each new element is inserted at a location that is past all the previous elements
according to column-major ordering; (ii) flexible ad-hoc construction or element-wise
modification of sparse matrices via unordered insertion of elements, where each new el-
ement is inserted at a random location; (iii) operations involving bulk coordinate trans-
formations; (iv) multiplication of dense vectors with sparse matrices; (v) multiplication
of two sparse matrices.

Below we briefly describe each storage format and its limitations. We use N to in-
dicate the number of non-zero elements of the matrix, while n rows and n cols indicate
the number of rows and columns, respectively.



Function Description
sp mat X(100,200) Declare sparse matrix with 100 rows and 200 columns

sp cx mat X(100,200) As above, but use complex elements
X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X
X = 4.56 * A Multiply matrix A by scalar
X = A + B Add matrices A and B
X = A * B Multiply matrices A and B
X = kron(A, B) Kronecker tensor product of matrices A and B
X( span(1,2), span(3,4) ) Provide read/write access to submatrix of X
X.diag(k) Provide read/write access to diagonal k of X
X.print() Print matrix X to terminal
X.save(filename, format) Store matrix X as a file
speye(rows, cols) Generate sparse matrix with values on diagonal set to one
sprandu(rows, cols, density) Generate sparse matrix with random non-zero elements
sum(X, dim) Sum of elements in each column (dim=0) or row (dim=1)
min(X, dim); max(X, dim) Obtain extremum value in each col. (dim=0) or row (dim=1)
X.t() or trans(X) Return transpose of matrix X
repmat(X, rows, cols) Replicate matrix X in block-like fashion
norm(X, p) Compute p-norm of vector or matrix X
normalise(X, p, dim) Normalise each col. (dim=0) or row (dim=1) to unit p-norm
trace(A.t() * B) Compute trace omitting explicit transpose and multiplication
eigs gen(eigval, eigvec, X, k) Compute k largest eigenvalues and eigenvectors of matrix X
svds(U, s, V, X, k) Compute k singular values and singular vectors of matrix X
X = spsolve(A, b) Solve sparse system Ax = b for x

Table 1. Selected functionality of the sparse matrix class, with brief descriptions. See
http://arma.sourceforge.net/docs.html#SpMat for more detailed documentation. Several op-
tional additional arguments have been omitted for brevity.

3.1 Compressed Sparse Column

In the CSC format [12], three arrays are used: (i) the values array, which is a contiguous
array of N floating point numbers holding the non-zero elements, (ii) the row indices
array, which is a contiguous array of N integers holding the corresponding row indices
(ie., the n-th entry contains the row of the n-th element), and (iii) the column offsets
array, which is a contiguous array of n cols + 1 integers holding offsets to the values
array, with each offset indicating the start of elements belonging to each column. Let us
denote the i-th entry in the column offsets array as c[i], the j-th entry in the row indices
array as r[j], and the n-th entry in the values array as v[n]. All arrays use zero-based
indexing, ie., the initial position in each array is denoted by 0. Then, v[c[i] ] is the first
element in column i, and r[c[i] ] is the corresponding row of the element. The number
of elements in column i is determined using c[i+1]− c[i], where, by definition, c[0] is
always 0 and c[n cols] is equal to N .

The CSC format is well-suited for sparse linear algebra operations such as summa-
tion and vector-matrix multiplication. It is also suited for operations that do not change
the structure of the matrix, such as element-wise operations on the nonzero elements.
The format also affords relatively efficient random element access; to locate an ele-
ment (or determine that it is not stored), a single lookup to the beginning of the desired
column can be performed, followed by a binary search to find the element.

http://arma.sourceforge.net/docs.html#SpMat


The main disadvantage of CSC is the effort required to insert a new element. In the
worst-case scenario, memory for three new larger-sized arrays (containing the values
and locations) must first be allocated, the position of the new element determined within
the arrays, data from the old arrays copied to the new arrays, data for the new element
placed in the new arrays, and finally the memory used by the old arrays deallocated. As
the number of elements in the matrix grows, the entire process becomes slower.

There are opportunities for some optimisation, such as using oversized storage to
reduce memory allocations, where a new element past all the previous elements can
be readily inserted. It is also possible to perform batch insertions with some speedup
by first sorting all the elements to be inserted and then merging with the existing data
arrays. While the above approaches can be effective, they require the user to explicitly
deal with low-level storage details instead of focusing on high-level functionality.

The CSC format was chosen over the related Compressed Sparse Row (CSR) for-
mat [12] for two main reasons: (i) to ensure compatibility with external libraries such
as the SuperLU solver [8], and (ii) to ensure consistency with the surrounding infras-
tructure provided by the Armadillo library, which uses column-major dense matrix rep-
resentation for compatibility with LAPACK [1].

3.2 Coordinate List Representation
The Coordinate List (COO) is a general concept where a list L = (l1, l2, · · · , lN ) of
3-tuples represents the non-zero elements in a matrix. Each 3-tuple contains the loca-
tion indices and value of the element, ie., l = (row, column, value). The format does not
prescribe any ordering of the elements, and a linked list [2] can be used to represent
L. However, in a computational implementation geared towards linear algebra opera-
tions [12], L is often represented as a set of three arrays: (i) the values array, which is
a contiguous array of N floating point numbers holding the non-zero elements of the
matrix, and the (ii) rows and (iii) columns arrays, which are contiguous arrays of N
integers, holding the row and column indices of the corresponding values.

The array-based representation of COO is related to CSC, with the main difference
that for each element the column indices are explicitly stored. As such, the COO for-
mat contains redundancy and is hence less efficient than CSC for representing sparse
matrices. However, in the COO format the coordinates of all elements can be directly
read and modified in a batch manner, which facilitates specialised/niche operations that
involve bulk transformation of matrix coordinates (eg., circular shifts). In the CSC for-
mat such operations are more time-consuming and/or more difficult to implement, as
the compressed structure must be taken into account. The general disadvantages of the
array-based representation of COO are similar as for the CSC format, in that element
insertion is typically a slow process.

3.3 Red-Black Tree
To address the problems with element insertion at arbitrary locations, we first represent
each element as a 2-tuple, l = (index, value), where index encodes the location of the
element as index = row + column × n rows. This encoding implicitly assumes column-
major ordering of the elements. Secondly, rather than using a linked list or an array
based representation, the list of the tuples is stored as a Red-Black Tree (RBT), a self-
balancing binary search tree [2].



Briefly, an RBT is a collection of nodes, with each node containing the 2-tuple
described above and links to two children nodes. There are two constraints: (i) each
link points to a unique child node and (ii) there are no links to the root node. The
ordering of the nodes and height of the tree is explicitly controlled so that searching
for a specific index (ie., retrieving an element at a specific location) has worst-case
complexity of O(logN). Insertion and removal of nodes (ie., matrix elements), also
has the worst-case complexity of O(logN). If a node to be inserted is known to have
the largest index so far (eg., during incremental matrix construction), the search for
where to place the node can be omitted, thereby speeding up the insertion process close
to O(1) complexity.

Traversing the tree in an ordered fashion (from the smallest to largest index) is
equivalent to reading the elements in column-major ordering. This in turn allows the
quick conversion of matrix data stored in RBT format into CSC format. Each element’s
location is simply decoded via row = index mod n rows and column = bindex/n rowsc,
with the operations accomplished via direct integer arithmetic on CPUs.

In our hybrid format, the RBT format is used for incremental construction of sparse
matrices, either in an ordered or unordered fashion, and a subset of elementwise opera-
tions. This in turn enables users to construct sparse matrices in the same way they might
construct dense matrices—for instance, a loop over elements to be inserted without re-
gard to storage format.

4 Automatically Switching Between Storage Formats

To avoid the problems associated with selection and manual conversion between for-
mats, our sparse matrix class uses a hybrid storage framework that automatically and
seamlessly switches between the data storage formats described in Section 3.

By default, matrix elements are stored in CSC format. When required, data in CSC
format is internally converted to either the RBT or COO format, on which an operation
or set of operations is performed. The matrix is automatically converted (‘synced’) back
to the CSC format the next time an operation requiring the CSC format is performed.

The actual underlying storage details and conversion operations are completely hid-
den from the user, who may not necessarily be knowledgeable about (or care to learn
about) sparse matrix storage formats. This allows for simplified code, which in turn
increases readability and lowers maintenance. In contrast, other toolkits without au-
tomatic format conversion can cause either slow execution (as a non-optimal storage
format might be used), or require many manual conversions. As an example, Fig. 1
shows a short Python program using the SciPy toolkit and a corresponding C++ pro-
gram using the sparse matrix class. Manually initiated format conversions are required
for efficient execution in the SciPy version; this causes both development time and code
size to increase.

To empirically demonstrate the usefulness of the hybrid storage framework we have
performed several experiments: (i) quasi-ordered element insertion, ie., incremental
construction, (ii) unordered (random) insertion, and (iii) matrix multiplication. In all
cases the sparse matrices have a size of 10,000×10,000, with four settings for the density
of non-zero elements: 0.01%, 0.1%, 1%, 10%.



X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X

sp_mat X = sprandu(1000, 1000, 0.01);

// automatic conversion to RBT format

// for fast insertion of elements

X(1,1) = 1.23;

X(3,4) += 4.56;

// random dense vector

rowvec V(1000, fill::randu);

// automatic conversion of X to CSC

// prior to multiplication

rowvec W = V * X;

Fig. 1. Left panel: a Python program using the SciPy toolkit, requiring explicit conversions be-
tween sparse format types to achieve efficient execution; if an unsuitable sparse format is used for
a given operation, SciPy will emit TypeError or SparseEfficiencyWarning. Right panel: A corre-
sponding C++ program using the sparse matrix class, with the format conversions automatically
done by the class.
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Fig. 2. Time taken to (a) insert elements at random locations into a sparse matrix to achieve vari-
ous densities of non-zero elements, and (b) multiply two sparse matrices with elements at random
locations and various densities. In both cases the sparse matrices have a size of 10,000×10,000.

Fig. 2(a) shows the time taken for unordered element insertion done directly using
the underlying storage formats (ie., CSC, COO, RBT, as per Sec. 3), as well as the
hybrid approach which uses RBT followed by conversion to CSC. The CSC and COO
formats use oversized storage as a form of optimisation. The RBT format is the quickest,
generally by one or two orders of magnitude, with the conversion from RBT to CSC
adding negligible overhead. The results for quasi-ordered insertion (not shown) follow
a similar pattern.

Fig. 2(b) shows the time taken to multiply two sparse matrices in either CSC or
RBT format, with the matrix elements already stored in each format. The COO format
was omitted due to its similarity with CSC. The hybrid storage format automatically
uses CSC for matrix multiplication, which is faster than RBT by about two orders of
magnitude.



5 Conclusion

Motivated by a lack of easy-to-use tools for sparse matrix development, we have pro-
posed and implemented a sparse matrix class in C++ that internally uses a hybrid for-
mat. The hybrid format automatically converts between good representations for spe-
cific functionality, allowing the user to write sparse linear algebra without requiring
to consider the underlying storage format. Internally, the hybrid format uses the CSC
(compressed sparse column), COO (coordinate list), and RBT (red-black tree) formats.
In addition, template meta-programming is used to optimise common expression pat-
terns. We have made our implementation available as part of the open-source Armadillo
C++ library [13].

The class has already been successfully used in open-source projects such as
MLPACK, a C++ library for machine learning and pattern recognition [3]. It is used
there to allow machine learning algorithms to be run on either sparse or dense datasets.
Furthermore, bindings are provided to the R environment via RcppArmadillo [6].

Future avenues for exploration include integrating more specialised matrix formats
in order to automatically speed up specific operations. For example, the Skyline for-
mats [4] are useful for Cholesky factorisation and related operations.
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