13,664 research outputs found
Formation and evolution of clumpy tidal tails around globular clusters
We present some results of numerical simulations of a globular cluster
orbiting in the central region of a triaxial galaxy on a set of 'loop' orbits.
Tails start forming after about a quarter of the globular cluster orbital
period and develop, in most cases, along the cluster orbit, showing clumpy
substructures as observed, for example, in Palomar 5. If completely detectable,
clumps can contain about 7,000 solar masses each, i.e. about 10% of the cluster
mass at that epoch. The morphology of tails and clumps and the kinematical
properties of stars in the tails are studied and compared with available
observational data. Our finding is that the stellar velocity dispersion tends
to level off at large radii, in agreement to that found for M15 and Omega
Centauri.Comment: LaTeX 2e, uses AASTeX v5.x, 40 pages with 18 figures. Submitted to
The Astronomical Journa
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
A Cheap Metal for a "Noble" Task: Preparative and Mechanistic Aspects of Cycloisomerization and Cycloaddition Reactions Catalyzed by Low-Valent Iron Complexes
Reaction of ferrocene with lithium in the presence of either ethylene or COD allows the Fe(0)-ate complexes 1 and 4 to be prepared on a large scale, which turned out to be excellent catalysts for a variety of Alder-ene, [4+2], [5+2], and [2+2+2] cycloadditon and cycloisomerization reactions of polyunsaturated substrates. The structures of ferrates 1 and 4 in the solid-state reveal the capacity of the reduced iron center to share electron density with the ligand sphere. This feature, coupled with the kinetic lability of the bound olefins, is thought to be responsible for the ease with which different enyne or diyne substrates undergo oxidative cyclization as the triggering event of the observed skeletal reorganizations. This mechanistic proposal is corroborated by highly indicative deuterium labeling experiments. Moreover, it was possible to intercept two different products of an oxidative cyclization manifold with the aid of the Fe(+1) complex 6, which, despite its 17-electron count, also turned out to be catalytically competent in certain cases. The unusual cyclobutadiene complex 38 derived from 6 and tolane was characterized by X-ray crystallography
Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032
We report high-resolution, high-signal-to-noise, observations of the
extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system
has a long period : P = 424.7 0.6 days. It comprises two main sequence
stars having effective temperatures 6300 K and 5600 K, with a ratio of
secondary to primary mass of 0.89 0.04. The metallicity of the system is
[Fe/H] = -3.71 0.11 0.12 (random and systematic errors) -- somewhat
higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of
less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have
significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements
might have been underproduced relative to Mg in the material from which this
object formed. In the context of the hypothesis that the abundance patterns of
extremely metal-poor stars are driven by individual enrichment events and the
models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent
with its having been enriched by a zero-metallicity supernova of mass 30
M. As the most metal-poor near-main-sequence-turnoff star currently
known, the primary of the system has the potential to strongly constrain the
primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03
0.07, which is consistent with the finding of Ryan et al. (1999) that for
stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical
Journal, Sept. 1, 2000 issu
Minimax mean estimator for the trine
We explore the question of state estimation for a qubit restricted to the
- plane of the Bloch sphere, with the trine measurement. In our earlier
work [H. K. Ng and B.-G. Englert, eprint arXiv:1202.5136[quant-ph] (2012)],
similarities between quantum tomography and the tomography of a classical die
motivated us to apply a simple modification of the classical estimator for use
in the quantum problem. This worked very well. In this article, we adapt a
different aspect of the classical estimator to the quantum problem. In
particular, we investigate the mean estimator, where the mean is taken with a
weight function identical to that in the classical estimator but now with
quantum constraints imposed. Among such mean estimators, we choose an optimal
one with the smallest worst-case error-the minimax mean estimator-and compare
its performance with that of other estimators. Despite the natural
generalization of the classical approach, this minimax mean estimator does not
work as well as one might expect from the analogous performance in the
classical problem. While it outperforms the often-used maximum-likelihood
estimator in having a smaller worst-case error, the advantage is not
significant enough to justify the more complicated procedure required to
construct it. The much simpler adapted estimator introduced in our earlier work
is still more effective. Our previous work emphasized the similarities between
classical and quantum state estimation; in contrast, this paper highlights how
intuition gained from classical problems can sometimes fail in the quantum
arena.Comment: 18 pages, 3 figure
A New Method of Measuring 81Kr and 85Kr Abundances in Environmental Samples
We demonstrate a new method for determining the 81Kr/Kr ratio in
environmental samples based upon two measurements: the 85Kr/81Kr ratio measured
by Atom Trap Trace Analysis (ATTA) and the 85Kr/Kr ratio measured by Low-Level
Counting (LLC). This method can be used to determine the mean residence time of
groundwater in the range of 10^5 - 10^6 a. It requires a sample of 100 micro-l
STP of Kr extracted from approximately two tons of water. With modern
atmospheric Kr samples, we demonstrate that the ratios measured by ATTA and LLC
are directly proportional to each other within the measurement error of +/-
10%; we calibrate the 81Kr/Kr ratio of modern air measured using this method;
and we show that the 81Kr/Kr ratios of samples extracted from air before and
after the development of the nuclear industry are identical within the
measurement error
Finite size effects on transport coefficients for models of atomic wires coupled to phonons
We consider models of quasi-1-d, planar atomic wires consisting of several,
laterally coupled rows of atoms, with mutually non-interacting electrons. This
electronic wire system is coupled to phonons, corresponding, e.g., to some
substrate. We aim at computing diffusion coefficients in dependence on the wire
widths and the lateral coupling. To this end we firstly construct a numerically
manageable linear collision term for the dynamics of the electronic occupation
numbers by following a certain projection operator approach. By means of this
collision term we set up a linear Boltzmann equation. A formula for extracting
diffusion coefficients from such Boltzmann equations is given. We find in the
regime of a few atomic rows and intermediate lateral coupling a significant and
non-trivial dependence of the diffusion coefficient on both, the width and the
lateral coupling. These results, in principle, suggest the possible
applicability of such atomic wires as electronic devices, such as, e.g.,
switches.Comment: 9 pages, 5 figures, accepted for publication in Eur. Phys. J.
Gauge-invariant theory of pion photoproduction with dressed hadrons
Based on an effective field theory of hadrons in which quantum chromodynamics
is assumed to provide the necessary bare cutoff functions, a gauge-invariant
theory of pion photoproduction with fully dressed nucleons is developed. The
formalism provides consistent dynamical descriptions of pi-N --> pi-N
scattering and Gamma-N --> pi-N production mechanisms in terms of nonlinear
integral equations for fully dressed hadrons. Defining electromagnetic currents
via the gauging of hadronic n-point Green's functions, dynamically detailed
currents for dressed nucleons are introduced. The dressed hadron currents and
the pion photoproduction current are explicitly shown to satisfy gauge
invariance in a self-consistent manner. Approximations are discussed that make
the nonlinear formalism manageable in practice and yet preserve gauge
invariance. This is achieved by recasting the gauge conditions for all
contributing interaction currents as continuity equations with ``surface''
terms for the individual particle legs coming into or going out of the hadronic
interaction region. General procedures are given that approximate any type of
(global) interaction current in a gauge-invariance preserving manner as a sum
of single-particle ``surface'' currents. It is argued that these prescriptions
carry over to other reactions, irrespective of the number or type of
contributing hadrons or hadronic systems.Comment: 33 pages, RevTeX; includes 8 postscript figures (requires psfig.sty).
This version corrects some minor errors, etc.; contains updated references.
Accepted for publication in Phys. Rev. C56 (Oct. 97
Conversion of bright magneto-optical resonances into dark at fixed laser frequency for D2 excitation of atomic rubidium
Nonlinear magneto-optical resonances on the hyperfine transitions belonging
to the D2 line of rubidium were changed from bright to dark resonances by
changing the laser power density of the single exciting laser field or by
changing the vapor temperature in the cell. In one set of experiments atoms
were excited by linearly polarized light from an extended cavity diode laser
with polarization vector perpendicular to the light's propagation direction and
magnetic field, and laser induced fluorescence (LIF) was observed along the
direction of the magnetic field, which was scanned. A low-contrast bright
resonance was observed at low laser power densities when the laser was tuned to
the Fg=2 --> Fe=3 transition of Rb-87 and near to the Fg=3 --> Fe=4 transition
of Rb-85. The bright resonance became dark as the laser power density was
increased above 0.6mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2 --> Fe=3
transition of Rb-87 was excited with circularly polarized light in a second set
of experiments, a bright resonance was observed, which became dark when the
temperature was increased to around 50C. The experimental observations at room
temperature could be reproduced with good agreement by calculations based on a
theoretical model, although the theoretical model was not able to describe
measurements at elevated temperatures, where reabsorption was thought to play a
decisive role. The model was derived from the optical Bloch equations and
included all nearby hyperfine components, averaging over the Doppler profile,
mixing of magnetic sublevels in the external magnetic field, and a treatment of
the coherence properties of the exciting radiation field.Comment: 9 pages, 7 figure
Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry
The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted
- …