98 research outputs found

    Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster

    Get PDF
    Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating.In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif.We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation

    Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice

    Get PDF
    BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue

    EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Get PDF
    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus

    Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

    Get PDF
    PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex

    Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils

    Get PDF
    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)–0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter

    Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor

    Get PDF
    Abstract Introduction Tumor-initiating cells (TIC) are being extensively studied for their role in tumor etiology, maintenance and resistance to treatment. The isolation of TICs has been limited by the scarcity of this population in the tissue of origin and because the molecular signatures that characterize these cells are not well understood. Herein, we describe the generation of TIC-like cell lines by ectopic expression of the OCT4 transcription factor (TF) in primary breast cell preparations. Methods OCT4 cDNA was over-expressed in four different primary human mammary epithelial (HMEC) breast cell preparations from reduction mammoplasty donors. OCT4-transduced breast cells (OTBCs) generated colonies (frequency ~0.01%) in self-renewal conditions (feeder cultures in human embryonic stem cell media). Differentiation assays, immunofluorescence, immunohistochemistry, and flow cytometry were performed to investigate the cell of origin of OTBCs. Serial dilutions of OTBCs were injected in nude mice to address their tumorigenic capabilities. Gene expression microarrays were performed in OTBCs, and the role of downstream targets of OCT4 in maintaining self-renewal was investigated by knock-down experiments. Results OTBCs overcame senescence, overexpressed telomerase, and down-regulated p16INK4A . In differentiation conditions, OTBCs generated populations of both myoepithelial and luminal cells at low frequency, suggesting that the cell of origin of some OTBCs was a bi-potent stem cell. Injection of OTBCs in nude mice generated poorly differentiated breast carcinomas with colonization capabilities. Gene expression microarrays of OTBC lines revealed a gene signature that was over-represented in the claudin-low molecular subtype of breast cancer. Lastly, siRNA-mediated knockdown of OCT4 or downstream embryonic targets of OCT4, such as NANOG and ZIC1, suppressed the ability of OTBCs to self-renew. Conclusions Transduction of OCT4 in normal breast preparations led to the generation of cell lines possessing tumor-initiating and colonization capabilities. These cells developed high-grade, poorly differentiated breast carcinomas in nude mice. Genome-wide analysis of OTBCs outlined an embryonic TF circuitry that could be operative in TICs, resulting in up-regulation of oncogenes and loss of tumor suppressive functions. These OTBCs represent a patient-specific model system for the discovery of novel oncogenic targets in claudin-low tumors

    Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network

    Get PDF
    Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity
    • …
    corecore