3 research outputs found

    Combinatorics of Bricard's octahedra

    Get PDF
    We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be enjoyed without the need of a very deep background on the topic

    On the Existence of Paradoxical Motions of Generically Rigid Graphs on the Sphere

    No full text
    We interpret realizations of a graph on the sphere up to rotations as elements of a moduli space of curves of genus zero. We focus on those graphs that admit an assignment of edge lengths on the sphere resulting in a flexible object. Our interpretation of realizations allows us to provide a combinatorial characterization of these graphs in terms of the existence of particular colorings of the edges. Moreover, we determine necessary relations for flexibility between the spherical lengths of the edges. We conclude by classifying all possible motions on the sphere of the complete bipartite graph with 3+3 vertices where no two vertices coincide or are antipodal

    On the maximal number of real embeddings of minimally rigid graphs in R2, R3 and S2

    No full text
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd or on a sphere and other manifolds which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2 and R3, while in the case of S2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al., 2018). © 2019 Elsevier Lt
    corecore