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Abstract. We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning
of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations
of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of
stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once
one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be
enjoyed without the need of a very deep background on the topic.

Résumé. Dans cet article, on donne une preuve alternative de la classification des mouvements d’un octa-
èdre, originalement obtenue par Bricard au début du XXe siècle. On utilise une construction combinatoire
avec un certain nombre de règles essentielles. Ces règles reposent sur une machinerie bien connue dans la
géométrie algébrique moderne : l’espace de modules des courbes rationnelles stables avec des points mar-
qués, utilisé pour codifier les configurations de graphes sur la sphère. On introduit un certain nombre d’objets
et de règles : une fois que l’on les assume, la classification des mouvements d’un octaèdre telle que l’on ex-
pose devient élémentaire (bien que pas triviale) et peut être appréciée par le lecteur sans besoin de connais-
sances préalables très approfondies sur le sujet. 1
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1. Introduction

Cauchy proved [11] that every convex polyhedron is rigid, in the sense that it cannot move
keeping the shape of its faces. Moreover, Gluck showed in [17] that “almost all” simply connected
polyhedra are rigid.

Hence, flexible polyhedra must be concave, and indeed Bricard discovered [7–9] three families
of concave flexible octahedra. Lebesgue lectured about Bricard’s construction in 1938/39 [20],
and Bennett discussed flexible octahedra in his work [6]. In recent years, there has been renewed
interest in the topic: from early analysis of Bricard’s octahedra [3, 13, 28] to their relations with
a broader class of flexible surfaces [30], to applications in robotics [4, 5, 24], generalizations
of Bricard’s construction [25, 26] and the analysis of flexible octahedra in different ambient
spaces [23], to the study of flexibility of polyhedra via algebraic and topological techniques [1,
2, 10, 14, 22]. Flexible octahedra are self-intersecting: the first example of an embedded (i.e., with
faces intersecting only at their common edges) flexible polyhedron is due to Connelly [12].

Flexibility of polyhedra is the “discrete counterpart” of the classical problem of flexibility of
closed smooth surfaces, i.e., compact smooth surfaces without boundaries, in R3. Two smooth
surfaces are isometric when there exists a distance-preserving function among them, where the
distance between two points is the infimum of the lengths of curves connecting them. A surface S
is flexible if it is contained in a smooth/continuous family of surfaces, all of whose elements
are isometric to S, but not via a linear isometry of R3. A well-known theorem by Cohn–Vossen
states that no convex closed smooth surface is flexible; this result was extended to a more general
class of convex surfaces by Nirenberg, Alexandrov, and Pogorelov. Many more results have been
obtained on this topic; we refer, for precise statements and references, to the work (in progress)
by Mohammad Ghomi, available at [16].

The goal of this paper is to re-prove Bricard’s result by employing modern techniques in
algebraic geometry that hopefully may be applied to more general situations.

The three families of flexible octahedra are the following (see Figures 1 and 2):

(Type I) Octahedra whose vertices form three pairs of points symmetric with respect to a line.
(Type II) Octahedra whose vertices are given by two pairs of points symmetric with respect to a

plane passing through the last two vertices.
(Type III) Octahedra all of whose pyramids1 have the following property: the two pairs of opposite

angles2 are constituted of angles that are either both equal or both supplementary;
moreover, we ask the lengths `i j of the edges3 to satisfy three linear equations of the
form:

η35`35 +η45`45 +η46`46 +η36`36 = 0,

η14`14 +η24`24 +η23`23 +η13`13 = 0,

η15`15 +η25`25 +η26`26 +η16`16 = 0,

(1)

where ηi j ∈ {1,−1} and in each equation we have exactly two positive ηi j and two
negative ones.

Animations of the motions of each of the three families can be found at
https://jan.legersky.cz/project/bricard_octahedra/.

The fact that an octahedron with line symmetry is flexible is well-known (see, for example, [27,
Section 5]) and follows from a count of the free parameters versus the number of equations
imposed by the edges. A similar argument also shows that plane-symmetric octahedra are

1Here by “pyramid” we mean a 4-tuple of edges sharing a vertex. See Definition 10 for formal specification and
notation.

2Here by “angle” of a pyramid we mean the angle formed by two concurrent edges belonging to the same face.
3Here we label the vertices of the octahedron by the numbers {1, . . . , 6}.
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Matteo Gallet, Georg Grasegger, Jan Legerský and Josef Schicho 9where ηij ∈ {1,−1} and in each equation we have exactly two positive ηij and
two negative ones.

Figure 1: Flexible octahedra of Type I and Type II found by Bricard.

Figure 2: Bricard found that certain flexible octahedra of Type III admit the following
construction: in the plane, pick two points A1 and A2 and two circles, and
draw the tangent lines to the circles passing through the points Ai. These
lines determine four other points B1, B2, C1 and C2, which together with
A1 and A2 define a flat realization of a Type III octahedron.

Animations of the motions of each of the three families can be found at
https://jan.legersky.cz/project/bricard_octahedra/.

The fact that an octahedron with line symmetry is flexible is well-known (see, for
example, [Sch10, Section 5]) and follows from a count of the free parameters versus
the number of equations imposed by the edges. A similar argument also shows that
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Figure 2. Bricard found that certain flexible octahedra of Type III admit the following
construction: in the plane, pick two points A1 and A2 and two circles, and draw the tangent
lines to the circles passing through the points Ai . These lines determine four other points
B1, B2, C1 and C2, which together with A1 and A2 define a flat realization of a Type III
octahedron.

flexible. Proving that Type III octahedra are flexible is more complicated, and for this we refer
to the proof given by Lebesgue (see [20]).

The technique we adopt to analyze motions of an octahedron is to reduce to the case of
flexible spherical linkages, and to use the tools developed in our previous work [15] to derive
the classification. More precisely, our work consists of two parts: in the first part, we prove some
elementary facts about motions of an octahedron and we provide their classification by using
combinatorial objects called octahedral and pyramidal flexibility functions, and rules that relate
them; in the second part, we explain the rules via the theory developed in [15] on flexible graphs
on the sphere. The first part is rather nontechnical and aimed at the general public; the second
part involves more technicalities and requires some acquaintance with the material from [15] for
the detailed justification of the arguments. By splitting the text in such a way, we hope to widen
the possible readership to those readers who may not be extremely interested in the specific
details of the algebro-geometric part of the proof but are fascinated by this old topic; at the same
time, we hope to convince them that the techniques we introduce by employing objects from
modern algebraic geometry may be well-suited for these classical questions, and may have the

C. R. Mathématique, 2021, 359, n 1, 7-38
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chance to shed light on related topics that have not been fully investigated yet.
The paper is structured as follows. Section 2 reports the basic definitions and the main result of

this paper. Section 3 reports elementary results on motions of pyramids, and in particular about
planar, or flat, realizations. Section 4 provides the classification of motions of an octahedron by
introducing octahedral and pyramidal flexibility functions, and by setting up, in an axiomatic
way, the rules that guide their behavior. The constraints imposed by these rules are then used to
classify motions. Section 5 describes how realizations of an octahedron in the space determine
realizations on the unit sphere of the graph whose vertices are the edges of the octahedron, and
whose edges encode the fact that edges of the octahedron lie on the same face. This opens the way
to the use of the methods developed by the authors in [15], namely, to the study of flexible graphs
on the sphere. Section 6 provides the precise background for the notion of flexibility functions
and justifies the rules in Section 4 via the techniques from [15].

2. Definitions and main result

So far, we used the word octahedron in an informal way. We start by formalizing its (fixed)
combinatorial structure and its realizations in R3.

The combinatorial structure we are going to use is the graph Goct with vertices {1, . . . , 6}
and edge set Eoct given by all unordered pairs {i , j } where i , j ∈ {1, . . . , 6} except for {1,2}, {3,4},
and {5,6} (see Figure 3).

1

45

2

3 6

Figure 3. The octahedral graph Goct.

Definition 1. A realization of Goct is a function ρ : {1, . . . , 6} −→R3. A labeling of Goct is a function
λ : Eoct −→ R>0 ; we use the notation λ{i , j } for λ({i , j }). A realization ρ is compatible with a
labeling λ if ‖ρ(i )−ρ( j )‖ = λ{i , j } for all {i , j } ∈ Eoct; in this case, we also say that the realization ρ

induces the labelingλ. Two realizationsρ1 andρ2 are called congruent if there exists an isometryσ
of R3 such that ρ1 =σ◦ρ2.

Notation 2. Throughout the text, we will use the expressions “realization ofGoct” and “realization
of an octahedron” interchangeably.

Definition 3. A flex of a realization ρ of an octahedron is a continuous map

f : [0,1) −→ (
R3)6

such that

• f (0) is the given realization ρ;
• for any t ∈ [0,1), the realizations f (t ) and f (0) induce the same labeling;
• for any two distinct t1, t2 ∈ [0,1), the realizations f (t1) and f (t2) are not congruent.

C. R. Mathématique, 2021, 359, n 1, 7-38
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A flex can exhibit a wide range of behaviors, but we now highlight that its image is always
contained in a finite union of algebraic varieties.

Remark 4. Let f : [0,1) −→ (R3)6 be a flex of a realization ρ. Consider the set

W := {
realizationS ρ′ inducing the same labeling as f (0)

}⊂ (
R3)6

.

By construction, the image of f is contained in W . On the other hand, the set W is the zero set of
the algebraic equations∥∥ρ′(i )−ρ′( j )

∥∥2 = ∥∥ρ(i )−ρ( j )
∥∥2 for all {i , j } ∈ Eoct ,

obtained by squaring the distances between adjacent vertices, where here we take the coordi-
nates of the points {ρ′(i )}6

i=1 as variables. Therefore, W is a finite union of irreducible algebraic
sets, and the image of f is contained in this union. Hence, in this case there exists an irreducible
component W0 of W such that ρ ∈ W0 and there exist infinitely many realizations ρ′ in W0 that
are pairwise non-congruent.

Definition 5. Let λ be a labeling of Goct. Consider the algebraic set

Wλ := {
realizations ρ′ compatible with λ

}⊂ (
R3)6

.

Any irreducible component W0 of Wλ such that there exist infinitely many realizations ρ′ ∈W0 that
are pairwise non-congruent is called a motion of an octahedron. Notice that, by definition, once a
realization ρ belongs to a motion, then all realizations ρ′ congruent to ρ belong to that motion as
well.

Hence we see that any flex of a realization of an octahedron is contained in finitely many
motions. On the other hand, given a motion and a realization in it, it is always possible, by
general properties of real algebraic sets, to find a flex of the given realization whose image is
contained in the given motion. In fact, fix a realization ρ in a motion. Consider the subset of (R3)6

of realizations where a specific face of the octahedron is fixed:

Zρ := {
ρ′ : {1, . . . , 6} −→R3 | ρ′(i ) = ρ(i ) for i ∈ {1,4,6}

}
.

The intersection of Zρ with the motion contains ρ, is constituted of realizations that are pairwise
non-congruent, and is at least one-dimensional. Pick an algebraic curve in this intersection
passing through ρ. If this curve is smooth, then it is a smooth manifold, hence there exists a
continuous path in it starting from ρ, which gives a flex of ρ. If the curve is singular, one can
apply the previous construction to its normalization, which is smooth and has an algebraic (thus,
continuous for the Euclidean topology) surjective map to the curve.

The goal of this paper is to classify the possible motions of an octahedron. However, notice
that there exist motions of the octahedron — sometimes called “butterfly motions” — for which
four faces stay always coplanar and rotate around the other four, which are coplanar as well. We
consider these motions as degenerate (and not particularly interesting), so we limit ourselves to
motions that satisfy the following genericity assumption.

Assumption 6. No two faces of the octahedron are coplanar for a general realization in a motion.
Here, recall that a motion is an irreducible variety, hence it is meaningful to speak about one of
its “general” elements, meaning that the property we are asking holds for all the realizations in a
motion but the ones that satisfy some further polynomial constraints.

Notice that Assumption 6 does not prohibit faces to be coplanar for some realizations in a
motion; what is important is that it does not happen that they are coplanar for all realizations.

Definition 7. A motion, for all of whose realizations two faces of the octahedron stay coplanar, is
called degenerate.

C. R. Mathématique, 2021, 359, n 1, 7-38
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Remark 8. An elementary, but tedious, inspection of all possibilities shows that if a triangle
in a realization of an octahedron reduces to a segment, then that realization does not admit
flexes. Moreover, as a corollary of the assumption, we have that no two vertices of the octahedron
coincide for a general realization in a motion.

We can now formally state the main result of this paper.

Theorem 9. Fix a motion satisfying Assumption 6. Then:

• each realization of the motion is line-symmetric; or
• each realization of the motion is plane-symmetric; or
• all realizations of the motion satisfy the conditions of Type III.

We prove Theorem 9 in Section 4.

3. Elementary properties of pyramids

A key object in our proof of the classification of octahedra are pyramids.

Definition 10. Pyramids are subgraphs of Goct induced by a vertex and its four neighbors. The
pyramid determined by v is denoted by v . Realizations of pyramids, their congruence, and flexes
are defined analogously as for octahedra. The same happens for motions. Here we make a similar
request as in Assumption 6, namely, we do not allow motions for which two triangular faces of a
pyramid are coplanar in a general realization of that motion.

As we are going to see in Section 5, pyramids are closely related to spherical quadrilaterals (as
depicted in Figure 4): this is how the paper [15] comes into play in our discussion. Because of that,
we adopt for pyramids the same classification as we adopted in [15] for spherical quadrilaterals.

Realizations of pyramids come in four families (here by an angle of a pyramid v we mean an
angle between edges of the form {u, v} and {w, v}, where u and w are neighbors):

deltoids here two disjoint pairs of adjacent angles are constituted of angles that are either both
equal or both supplementary;

rhomboids here the two pairs of opposite angles are constituted of angles that are either both equal
or both supplementary;

lozenges here either all angles are equal, or two are equal and the other two are each supplemen-
tary to the first two; furthermore, we ask none of the angles to be equal to π/2, because
otherwise any motion would be degenerate, namely two triangular faces would be copla-
nar for all realizations of the motion;

general here are realizations of pyramids not falling in one of the previous families and such that
not all angles equal π/2.

Notice that all realizations inducing the same labeling belong to the same family. In particular,
all realizations in a motion belong to the same family.

Definition 11. We say that a motion of a pyramid is a deltoid motion if one (or, equivalently, each)
of its realizations is a deltoid. In this case, we say that “the pyramid is a deltoid” (we will do this
often in Section 4). Similarly, we define rhomboid, lozenge, and general motions.

Remark 12. Given these definitions, we can say that a motion of an octahedron is of Type III if
all its pyramids’ motions are rhomboid or lozenge, and Equations (1) hold.

Hereafter, we list some elementary properties of motions of pyramids, in particular concerning
their planar (also called flat) realizations. The results are known and elementary; we report them
here mainly for self-containedness.

C. R. Mathématique, 2021, 359, n 1, 7-38
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Figure 4. Examples of a deltoid (on the left) and of a rhomboid (on the right). The intersec-
tion of the realization of the pyramid with the sphere highlights which pairs of angles are
equal.

Fact 13. Fix a labeling of a pyramid, and consider all motions of the pyramid yielding that
labeling. Then:

• If the pyramid is a deltoid, then there are two motions, only one of which satisfies Assump-
tion 6; the other one is a degenerate motion, in which the realizations of three vertices are
always collinear.

• If the pyramid is a rhomboid, then there are two motions, each of which satisfies Assump-
tion 6.

• If the pyramid is a lozenge, then there are three motions, only one of which satisfies
Assumption 6; the other two are degenerate motions, in which the realizations of three
vertices are always collinear.

• If the pyramid is general, then there is exactly one motion, and it satisfies Assumption 6.

Fact 14. Deltoid, rhomboid, and lozenge motions satisfying Assumption 6 have two flat realiza-
tions. In the case of deltoids and lozenges, in the flat realizations, three vertices of the pyramid are
collinear.

Remark 15. Given a realization ρ of a pyramid that yields a lozenge, there exist three flat
realizations that induce the same labeling as ρ, see Figure 5. However, one of them belongs to
both the two degenerate motions whose realizations induce the same labeling as ρ, but not to
the non-degenerate one. This is why we excluded this realization from the count in Fact 14.

v v v

Figure 5. The three flat realizations of a lozenge.

Fact 16. If a rhomboid realization of a pyramid has one dihedral angle between its triangular
faces which is 0 or π, then the realization is flat; vice versa, if a rhomboid realization of a pyramid
is flat, then all dihedral angles are 0 or π.

C. R. Mathématique, 2021, 359, n 1, 7-38
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Fact 17. Consider a lozenge motion satisfying Assumption 6. The flat realizations in such a motion
are precisely the ones where all dihedral angles are 0 or π.

Remark 18. For deltoids and lozenges, there are non-flat realizations where one dihedral angle
between its triangular faces is 0 or π. Notice that these non-flat realizations appear, for example,
in degenerate motions, namely, when two pairs of faces stay always coplanar during the motion.
In the case of deltoids, non-flat realizations might appear also in non-degenerate motions.

Definition 19. Fix a motion of a pyramid satisfying Assumption 6. A dihedral angle between two
triangular faces of a pyramid is simple with respect to that motion if, once we fix a general value for
that angle, there exists a unique (up to isometries) realization in that motion for which the angle
has the given value.

Notice that, once we consider Assumption 6, a lozenge has four simple dihedral angles, while
a deltoid has two simple dihedral angles.

Fact 20. A deltoid is in a flat realization if and only if one of its simple dihedral angles between
triangular faces are 0 or π.

Proposition 21. Fix a motion of an octahedron. This induces motions for all its 6 pyramids. If
among these motions there are two neighbor rhomboid or lozenge ones, then the motion of the
octahedron admits 2 flat realizations. Here, we say that two pyramids v and w are neighbors if the
vertices v and w are connected by an edge.

Proof. Suppose that the two neighbor pyramids are 1 and 3 . Suppose we are in a realization that
is flat for 1 . Then the dihedral angle between the planes 135 and 136 is 0 or π. Hence, by Facts 16
and 17 this realization is also flat for 3 . �

Remark 22. By Proposition 21, Type III motions admit two flat realizations.

4. Classification of flexible octahedra

In this section, we provide the classification of the motions of an octahedron, reproving the
known result by Bricard. We do this by attaching combinatorial objects to motions and by pre-
scribing rules for these objects. Eventually, the rules determine constraints on edge lengths and
angles, which can be grouped in four cases. By analyzing each of these cases, we classify motions
of the octahedron into the three families introduced by Bricard and described in Section 1, thus
proving Theorem 9.

The justification for the rules is provided in Section 6, and requires the algebro-geometric no-
tion of moduli space of rational stable curves with marked points, together with the theory devel-
oped by the authors in [15] about flexible graphs on the sphere. Once the rules are established,
however, the derivation of the classification is combinatorial in nature and uses the elementary
facts about pyramids reported in Section 3. We believe that inserting this combinatorial “extra-
layer” in the proof has two advantages: it helps highlighting the structure of the proof and separat-
ing logically independent units, and facilitates readers that may not be interested in the algebro-
geometric technicalities to follow the proof of the classification.

4.1. Objects

We are going to introduce two combinatorial objects that will guide the classification, called
octahedral and pyramidal flexibility functions. These functions encode a certain “limit behavior”
of the curve of distinct realizations of a motion, which will be explained in Section 6.

C. R. Mathématique, 2021, 359, n 1, 7-38
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Definition 23. A quadrilateral in Goct is an induced subgraph isomorphic to the cycle C4 on
four vertices. There exist exactly three quadrilaterals of Goct: they are those induced by the vertices
{1,2,3,4}, {1,2,5,6}, and {3,4,5,6}. Each quadrilateral is completely specified by the pair of vertices
not appearing in it, which form a non-edge inGoct. Therefore, we can label the quadrilaterals by 12,
34, and 56.

Given a quadrilateral, there are 16 possible ways of orienting all its edges. A quadrilateral
together with a choice of orientations for each of its edges is called an oriented quadrilateral.
Therefore, there are 48 oriented quadrilaterals.

Definition 24. An orientation of a pyramid v in Goct is a choice of an orientation for two edges
incident to v that are not in the same triangle subgraph. An oriented pyramid is a pyramid together
with an orientation (see Figure 6). There are 8 possible choices of an orientation for a pyramid.
Therefore, there are 48 oriented pyramids.

1

45

2

3 6

1

4

2

3

5

Figure 6. An oriented pyramid with vertex 5.

We fix a standard representation of a pyramid v by specifying which vertex is drawn where.
More precisely, we draw the pyramid as a square with the vertex v in the middle. Then we take
the clockwise neighbor of v in the drawing of Figure 3 to be on the bottom right corner of the
square. The other vertices are drawn accordingly to the clockwise order (see Figure 7).

v

w4w3

w2 w1

w4

w2

w3

w1

v

Figure 7. A pyramid in standard representation.

The standard representation of pyramids provides a standard way to represent oriented pyra-
mids:

P P P P P P P P

If we want to specify the vertex v of the pyramid, we put the symbol v as the superscript, as,
for example, in Pv .

C. R. Mathématique, 2021, 359, n 1, 7-38
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4.2. Flexibility functions

An octahedral flexibility function is a function

o :
{
oriented quadrilaterals in Goct

}−→N .

A pyramidal flexibility function is a function

p :
{
oriented pyramids in Goct

}−→ {0,1} .

As we will see in Section 6, a motion of an octahedron defines an octahedral and a pyramidal
flexibility function that satisfies particular properties which we call rules. Roughly speaking, every
oriented quadrilateral/pyramid specifies a set of possible configurations (i.e., realizations up to
isometries) “at infinity”. The value of the flexibility function at a certain oriented quadrilateral
equals the number of configurations in the set corresponding to it that are reached as limit
points of the realizations of the given motion. However, our concept of configurations, and their
behavior “at infinity”, is not straightforward, as we will see in Sections 5 and 6: it involves first a
translation from realizations in space to realizations on the sphere, an isomorphism of the Zariski
closure of the sphere to the product of two projective lines, and a compactification of the moduli
space of 2n points on a projective line modulo projective invariance.

Example 25. The following example may seem mysterious, and the veil is only lifted in Section 6.
For the moment, we want the inclined reader to understand flexibility functions as a kind of
game; then the example below just illustrates some of its rules.

Assume that we have a motion of an octahedron and consider a pyramid v . The pyramid
may be considered as a spherical 4-bar linkage: the angles in the triangles with vertex v are fixed
during any motion. If all four angles are distinct, i.e., if the pyramid is general, then the value of
the pyramidal flexibility function at all eight oriented pyramids with vertex v is 1. If the restriction
of the motion of the octahedron to the pyramid v is a deltoid motion, then the value of the
pyramidal flexibility function is 1 at six of the oriented pyramids with vertex v , and 0 at two of
the oriented pyramids with vertex v .

4.3. Rules

We introduce the rules that are satisfied by octahedral and pyramidal flexibility functions; their
formal justification will be provided in Section 6. The starting point is the following:

A motion of an octahedron determines
an octahedral and a pyramidal flexibility function.

These functions satisfy the following rules.

(R1) The pyramidal flexibility function determines whether each pyramid is: general (g), an
even deltoid (e, with two subfamilies), and odd deltoid (o, with two subfamilies), a
rhomboid (r, with four subfamilies), or a lozenge (l, with four subfamilies), as specified by
Table 1. A deltoid v is even (resp. odd) if the dihedral angles at its even (resp. odd) edges
are simple, where even (resp. odd) edges are determined by Figure 8.

C. R. Mathématique, 2021, 359, n 1, 7-38



Matteo Gallet, Georg Grasegger, Jan Legerský and Josef Schicho 17

1

45

2

3 6

e
o

o
e

1

45

2

3 6

e
e

o

o

1

45

2

3 6

o

e

e

o

Figure 8. Assignment for even and odd edges of pyramids. Only three pyramids are shown,
since the assignment for the other three can be deduced as follows: {1, a} is even/odd if and
only if {2, a} is so, and analogously for the other two pairs (3,4) and (5,6).

Table 1. Values of the pyramidal flexibility function associated to the possible families of
labeled pyramids. Pyramids are drawn in their standard representation.

family subfamily

g 1 1 1 1

o
coincide 1 1 1 0
antipodal 1 1 0 1

e
coincide 1 0 1 1
antipodal 0 1 1 1

r

Type 1 1 0 1 0
Type 2 0 1 1 0
Type 3 1 0 0 1
Type 4 0 1 0 1

l

Type 1 1 0 1 0
Type 2 0 1 1 0
Type 3 1 0 0 1
Type 4 0 1 0 1

The next rule R2 describes the connection between the octahedral flexibility function and
edge lengths: when the function is nonzero on an oriented quadrilateral, we get linear relations
between the edge lengths of the quadrilateral.

Definition 26. We choose the orientation of the edges of Goct as in Figure 9 and denote this
oriented graph by ~Goct. Notice that this choice is equivariant under cyclic permutations of the
vertices (1,4,5,2,3,6).

Given a labeling λ : Eoct −→ R>0, and given an oriented edge (i , j ) in ~Goct, we define the
number `i j to be the length λ{i , j }. We define the number ` j i to be −`i j .

(R2) If the octahedral flexibility function attains a positive value at an oriented quadrilateral
with oriented edges (t1, s1), (t2, s2), (t3, s3), (t4, s4), then the following relation among the
lengths holds:

`t1 s1 +`t2 s2 +`t3 s3 +`t4 s4 = 0. (2)
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1

45

2

3 6

Figure 9. Fixed orientations in the graph Goct. We call this oriented graph~Goct.

From Rule R2 we can already infer some properties of the octahedral flexibility function. We
show that this function can be positive only at some oriented quadrilaterals.

Lemma 27. Consider an oriented quadrilateral with oriented edges (t1, s1), . . . , (t4, s4). Equa-
tion (2) from Rule R2 has nontrivial solutions only if exactly two of the oriented edges
(t1, s1), . . . , (t4, s4) coincide with the oriented edges induced by~Goct (see Figure 10).

1

45

2

3 6

1

4

2

3

Figure 10. Orientations of the edges of a quadrilateral in~Goct (left) and those of an oriented
quadrilateral (right). Green edges describe edges where the orientation coincides and
red ones where they are opposite.

Proof. If all (or no) oriented edges in the quadrilateral coincide with the ones induced by ~Goct,
then in Equation (2) we have that the sum of four positive quantities is zero, a contradiction. If
one (or three) oriented edges in the quadrilateral coincide with the ones induced by ~Goct, then
we obtain a relation of the form `1 = `2 +`3 +`4, where all quantities {`k }4

k=1 are positive. This
implies that all the vertices of the quadrilateral are collinear in a general realization of the motion;
hence, some faces are coplanar, and we excluded this possibility in Assumption 6. Then the only
situation left is the one from the statement. �

A simple inspection provides the following result.

Proposition 28. Out of the 16 possible orientations of a quadrilateral in Goct, only 6 fulfill the
condition of Lemma 27. They come in three pairs, where two orientations are in the same pair if
one can be obtained from the other by reversing the orientations of all edges. One of these pairs is
constituted of orientations with the following property: if (t1, s1), . . . , (t4, s4) are the oriented edges,
then ∣∣⋃{

{tk , sk } where (tk , sk ) is a directed edge of ~Goct, k ∈ {1, . . . , 4}
}∣∣= 4.

This means that those edges that are oriented as in~Goct span the vertices of the quadrilateral. These
two special orientations are depicted as case X in Figure 11.
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Notation 29. We use the following notation for the 6 possible choices of orientations on a given
quadrilateral as described by Proposition 28. Let 12, 34, and 56 be the three quadrilaterals of Goct.
The six possible oriented quadrilaterals on the quadrilateral i j are denoted

Oi j
X , Oi j

X
, Oi j

Y , Oi j

Y
, Oi j

Z , Oi j

Z

according to the following criterion. As we mentioned in Definition 26, the orientation in~Goct is
equivariant under cyclic permutations of the indices (1,4,5,2,3,6). Hence, it is enough to define
the notation only for the oriented quadrilaterals on the quadrilateral 56, and extend the notion to
the others using cyclic permutations. We define O56

X , O56
Y , and O56

Z as the oriented quadrilaterals
as in Figure 11.

1

45

2

3 6

O56
X

1

45

2

3 6

O56
Y

1

45

2

3 6

O56
Z

Figure 11. Three of the six choices of orientations on the quadrilateral 56 that satisfy the
condition of Lemma 27.

The oriented quadrilaterals O56
X

, O56
Y

, and O56
Z

are defined to be the ones with the reversed

orientations with respect to the three previous ones. The two oriented quadrilaterals O56
X and O56

X
have the special property mentioned in Proposition 28. By applying cyclic permutations to the
previous 6 oriented quadrilaterals, we obtain 36 oriented quadrilaterals. The notation symbols
for these oriented quadrilaterals are obtained by applying cyclic permutations to the indices
appearing in the symbols for the oriented quadrilaterals O56• , where • ∈ {X ,Y , Z , X ,Y , Z }, and
then by applying the following rules:

Oi j
X = O j i

X
, Oi j

Y = O j i
Y , Oi j

Y
= O j i

Y
, Oi j

Z = O j i
Z , Oi j

Z
= O j i

Z
.

Corollary 30. The octahedral flexibility function can (but does not need to) attain positive values
only at the oriented quadrilaterals Oi j

• .

Definition 31. We denote the value of the octahedral flexibility function at the oriented quadri-
lateral Oi j

X by oi j
X , and similarly for the other oriented quadrilaterals.

Definition 32. We denote the value of the pyramidal flexibility function at the oriented pyra-
mid Pv by pv , and similarly for all other oriented pyramids.

The next rule R3 explains what happens to the octahedral and pyramidal flexibility functions
when we reverse directed edges.

(R3) Both the octahedral and pyramidal flexibility functions are invariant under the change of
orientation of all oriented edges in an oriented quadrilateral or pyramid.

To start the classification, we need one last rule R4, linking the octahedral and the pyramidal
flexibility functions. This rule, however, works only under an assumption on the pyramids of the
octahedron, called simplicity.
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Definition 33. Consider all motions of an octahedron that induce the same labeling as the motion
fixed at the beginning. We say that a pyramid is simple if, given a general realization of the
pyramid in the fixed motion, there is exactly one (up to isometries) non-degenerate realization of
the octahedron, belonging to any of these motions, that extends the one of the pyramid.

We can now state the last rule R4 and then we start the classification in the case of simple
pyramids. Afterwards, we deal with the situation of non-simple pyramids.

(R4) Suppose that all pyramids are simple. Then we have relations between the octahe-
dral and the pyramidal flexibility functions given by the following graphical rule (see
Figure 12). We consider a possible oriented pyramid, for example P on 1 . We draw the
orientation of the two edges specified by P on the representation of Goct as in Figure 3.
The value of the pyramidal flexibility function at P is then equal to the sum of the val-
ues of the octahedral flexibility function at the oriented quadrilaterals that “extend” the
two oriented edges of P ; in this case, we have a unique way to extend them, namely
by O56

Y
. Hence, we get the relation p1 = o56

Y
. If we start, instead, from P again on pyra-

mid 1 , we have two ways to extend it, namely, by O56
X and O56

Z . Therefore, the relation is
p1 = o56

X +o56
Z .

P 1

45

2

3 6

1

45

2

3 6

O56
Y

P 1

45

2

3 6

1

45

2

3 6

1

45

2

3 6

O56
X

O56
Z

Figure 12. Graphical derivation of the relations between the octahedral and the pyramidal
flexibility function.

By applying the graphical procedure to all oriented pyramids, and taking into account
Rule R3, we obtain the following linear system:

p1 = o34
Z , p3 = o56

Z , p5 = o12
Z ,

p1 = o34
X +o34

Y , p3 = o56
X +o56

Y , p5 = o12
X +o12

Y ,

p1 = o56
Y , p3 = o12

Y , p5 = o34
Y ,

p1 = o56
X +o56

Z , p3 = o12
X +o12

Z , p5 = o34
X +o34

Z ,

p1
• = p2

• , p3
• = p4

• , p5
• = p6

• ,

(3)

where • is any of the symbols { , , , }.
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With the rules at hand, we are ready to attack the classification.

4.4. Classification

We are now ready to prove Theorem 9. From now on, we suppose that the hypothesis in Rule R4
holds, namely, that we are given a motion of an octahedron and that all pyramids are simple. At
the end of the section, we analyze the situation when pyramids are not simple. We distinguish
four cases, parametrized by the sums of values of the octahedral flexibility function.

Definition 34. For each quadrilateral i j in Goct, we define oi j to be the quantity:

oi j := oi j
X +oi j

Y +oi j
Z +oi j

X
+oi j

Y
+oi j

Z

R3= 2
(
oi j

X +oi j
Y +oi j

Z

)
.

Lemma 35. There are only 4 possibilities (up to swapping quadrilaterals) for the numbers
(o12,o34,o56): (

o12,o34,o56) ∈ {(4,4,4), (4,4,2), (4,2,2), (2,2,2)} .

Proof. By Table 1 from Rule R1, we have

1 ≤ pv +pv ≤ 2 for every v ∈ {1, . . . , 6} ,

and similarly for pv + pv . It follows by Equation (3) from Rule R4 that oi j ∈ {2,4} for all i j ∈
{12,34,56}. The statement is then proven. �

Now we analyze the cases from Lemma 35 one by one.

Case (4,4,4). From Equation (3), we know that for all quadrilaterals i j in Goct

oi j
X +oi j

Y = pk ∈ {0,1} for a suitable k ,

oi j
X +oi j

Z = p` ∈ {0,1} for a suitable ` .

Moreover, by assumption we have

2
(
oi j

X +oi j
Y +oi j

Z

)
= 4.

This implies
oi j

X = 0, oi j
Y = oi j

Z = 1.

The equations for the edge lengths from Rule R2 imposed by the fact that oi j
Y = oi j

Z = 1 are, in the
case i j = 56:

`13 −`32 −`24 +`41 = 0,

`13 +`32 −`24 −`41 = 0.

This implies that `13 = `24 and `32 = `41. Namely, opposite edges in the three quadrilaterals
of Goct have the same length (see Figure 13).
Now notice that a parameter count shows that an octahedron whose opposite edges in each
quadrilateral have equal length possesses a line-symmetric motion. Since all pyramids are sim-
ple, there is exactly one way in the motion under consideration to extend a realization of a pyra-
mid. Since all pyramids are general, each of them admits exactly one motion. Therefore, such a
unique extension must be in the line-symmetric motion.

Case (4,4,2). From Equation (3) and Table 1 from Rule R1, we infer that the pyramids 5

and 6 are general, while 1 and 2 are odd deltoids and 3 and 4 are even deltoids. More-
over, from the fact that o12 = o34 = 4, we deduce as in Case (4,4,4) that the opposite edges in
the quadrilaterals 12 and 34 have the same length. We now show that the opposite edges in
the quadrilateral 56 have the same length, so as in Case (4,4,4) we conclude that we have a
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1

2

3

4

5

6

Figure 13. The edge lengths in Case (4,4,4): equal color corresponds to equal length.

Type I motion. Consider a realization for which the pyramid 1 is flat; then we have that 1, 3,
and 4 are collinear. Let us now look at the pyramid 3 for that realization: we would like to con-
clude that 3 is flat as well. Since 1 is flat, we have that the dihedral angle between the faces 135
and 136 is either 0 or π; however, this is a simple angle for 3 , hence by Lemma 20 also 3 is flat.
Therefore, the vertices 1, 2, 3, and 4 are collinear in that realization, and all the vertices are copla-
nar. Then the quadrilateral 34 is, in that realization, a parallelogram or an antiparallelogram (see
Figure 14).

1 234

5 6

1 234

5

6

Figure 14. Flat realization in Case (4,4,2): all vertices are coplanar, four of them are
collinear, and the quadrilateral 34 can be a parallelogram or an antiparallelogram.

Thus, the footpoint of the midpoint of the diagonal {5,6} on the line 1234 is the midpoint of
the diagonal {1,2}. By considering the quadrilateral 12, we get that the footpoint of the midpoint
of the diagonal {5,6} on the line 1234 is the midpoint of the diagonal {3,4}. Hence we obtain

`13 = `24 and `41 = `32 .

Thus, this case is a special case of a Type I motion allowing a flat realization.

Case (4,2,2). Here we see that the pyramids 3 and 4 are even deltoids, and the pyramids 5

and 6 are odd deltoids, while the pyramids 1 and 2 are either rhomboids or lozenges. Let us
suppose that we are in a flat realization of the pyramid 3 . Then the rhomboid 2 has one of the
angles which is 0 or π, hence it is flat as well. This implies that we have two flat realizations for the
octahedron as a whole. Since we have deltoids, as in Case (4,4,2), we have collinearities in a flat
realization, namely, the following triples of vertices are collinear (keep into account that 3 and 4

are even deltoids, while 5 and 6 are odd deltoids):

{1,2,3} , {1,2,6} , {1,2,5} , {1,2,4} .
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Therefore, all the vertices are collinear, unless in this special flat realization we have that 1 and 2
coincide 4. If the vertices are collinear in this special realization, then all the triangular faces are
degenerate, and so all vertices are collinear in any realization of the motion, but in this case the
octahedron cannot move at all. Hence, only the situation where 1 and 2 coincide can happen (see
Figure 15).

3 4

5 6

1 = 2

Figure 15. Global flat realization of an octahedron in Case (4,2,2): the vertices 1 and 2 must
coincide in this realization.

For this situation to happen, we must have

`16 = `26 , `13 = `32 , `41 = `24 , `15 = `25 .

Moreover, the fact that o12 = 4 implies, as in Case (4,4,4), that

`36 = `45 and `46 = `35 .

Altogether, this implies that for a general realization in this motion the vertices 3, 4, 5, and 6
are coplanar and that 1 and 2 are symmetric with respect to the plane spanned by the coplanar
vertices. Moreover, the planar quadrilateral 12 is either a parallelogram or an antiparallelogram.
Furthermore, from the fact that in the global flat realization of the octahedron the vertices 1 and 2
coincide, it follows that all the deltoids are of “coinciding” type. Using Table 1 from Rule R1, we
get that for the two odd deltoids

p = 1 and p = 0,

while for the two even deltoids
p = 1 and p = 0.

Therefore, by Equations (3) from Rule R4, we obtain

o56
Z = 1, o56

X = o56
Y = 0,

o34
Y = 1, o34

X = o34
Z = 0.

By using Rule R2, we get the constraints

−`41 −`24 +`32 +`13 = 0 and `25 +`51 −`16 −`62 = 0.

Taking into account the previous relations between lengths, these imply the equalities

`32 = `24 and `25 = `16 .

Altogether, these equations imply that, if the quadrilateral 12 is an antiparallelogram, then the
projection of the vertices 1 and 2 on the plane spanned by 3,4,5, and 6 lies, for all realizations of

4Recall that we forbid two vertices to coincide for a general realization in a motion, but they are allowed to coincide
in special realizations.
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the motion, on the symmetry line of the antiparallelogram. Hence we get a Type II motion. If the
quadrilateral 12 were a parallelogram, then the projection of the vertices 1 and 2 would be at the
intersection of its two symmetry axes; but then we would have a convex octahedron with a flex,
and this conflicts with Cauchy’s theorem.

Case (2,2,2). In this case, all the 6 pyramids are rhomboids or lozenges. Moreover, we have

oi j
X +oi j

Y +oi j
Z = 1

for any i j ∈ {12,34,56}, and so exactly one of these three quantities equals 1, while the other two
are zero. We hence obtain three linear constraints for the edge lengths, one for each of the three
quadrilaterals in Goct. Therefore, we have an octahedron of Type III.

The classification when all the pyramids are simple is then completed. We conclude this
section by showing that we can always reduce to the simple case. Let us describe this reduction
procedure as follows.

Reduction. Suppose that a pyramid, say 1 , is not simple. This means that there exist at least two
non-congruent realizations of the octahedron extending a general realization of 1 . This implies
that in all those realizations the points 3, 4, 5, and 6 must be coplanar. Then we construct another
octahedron by substituting the realization of vertex 2 with the mirror of the realization of the
vertex 1 with respect to the plane spanned by 3, 4, 5, and 6; see Figure 16. By the hypothesis on the
initial octahedron, we get that the new octahedron has a flex, and it has the further property that
pyramids 1 and 2 are simple. Here the fact that 1 and 2 are simple is ensured by Assumption 6,
which prevents different vertices from having the same realization.

Figure 16. An illustration of the reduction process: the original octahedron (in blue) is
transformed into one where the red pyramid substitutes the blue pyramid on the right of
the planar quadrilateral.

We claim that we can repeat this procedure finitely many times (actually, three times) and
obtain a situation where all the pyramids are simple. In fact, notice that the reduction process
preserves coplanarity in the following sense. Suppose that pyramid 1 is not simple and apply
the reduction. This means that vertices 3,4,5,6 are coplanar, and now 1 and 2 are symmetric
with respect to that plane, so in particular they lie on a perpendicular line to the plane 3456.
Suppose, furthermore, that after the reduction pyramid 3 is not simple, thus 1,2,5,6 are coplanar.
In this situation, the mirror of 3 with respect to the plane 1256 equals the mirror of 3, in the
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plane 3456, with respect to the line spanned by 5 and 6. Hence, after the second reduction, we
have that 3,4,5,6 are coplanar, and 1,2,5,6 are coplanar. Therefore, the reduction can be applied
only thrice.

As a by-product of the previous reduction, we have that when four vertices of the octahedron
are coplanar, the other two vertices are symmetric with respect to that plane. This implies that,
after the reduction, the four pyramids v with vertices v on that plane can only be deltoids or
lozenges.

To refine the by-product stated in the last paragraph, we introduce the notion of multiplicity
of an edge of the octahedron. A specific rule discusses the behavior of edge multiplicity.

Definition 36. Consider a motion of an octahedron, and consider an edge. Consider a general
value of the dihedral angle between the two triangular faces adjacent to the considered edge. The
multiplicity of the considered edge of the octahedron is the number (up to isometries) of realizations
of the octahedron in the motion that have the same general value of the dihedral angle at the edge.
Edges of multiplicity 1 are called simple, edges of multiplicity 2 are called double.

(R5) Edges may have multiplicity 1, 2, or 4. Two opposite edges of a pyramid v incident to v
have the same multiplicity; hence all the edges in a quadrilateral of Goct have the same
multiplicity. The multiplicity of two neighboring edges incident to v in a pyramid v may
at most differ by a factor of 2. A general pyramid has all edges of multiplicity 2 or 4. The
edges of a deltoid have multiplicity (2,4) or (1,2). The edges of a rhomboid or a lozenge
have all multiplicity 1 or all multiplicity 2.

With the notion of multiplicity at hand, we can say that if we apply the reduction at pyramid 1 ,
then 3 , 4 , 5 , and 6 are deltoids — since they are symmetric with respect to the plane 3456 —
whose edges incident to 1 or 2 are simple and whose other edges are double, or lozenges with
only simple edges.

We now explore all three possible cases that may appear after the reduction, namely, we can
have three, two, or one planar quadrilateral in the octahedron.

It is easy to see that there cannot be three planar quadrilaterals: all vertices would have to lie
on coordinate axes, and Pythagoras’ Theorem would give an easy proof of rigidity.

Assume that the vertices 3,4,5,6 are coplanar and 1,2,5,6 are coplanar as well. By the above
properties of the octahedron, it follows that all edges are simple and all pyramids are lozenges.
Thus the reduced octahedron belongs to Case (2,2,2). Therefore, it has two flat realizations.
However, when a lozenge is in a flat realization, then two opposite edges have to coincide. This,
however, cannot happen for all lozenges. In fact, in a flat realization, either the points 1 and 2, or
the points 3 and 4 must coincide, since the planes 3456 and 1256 are orthogonal to each other in
a general realization of the motion, and 1 and 2 are symmetric, as well as 3 and 4. Moreover, in
any case the points 1 = 2 or 3 = 4 are collinear with 5 and 6 in the flat realization. For simplicity, let
us suppose to be in a flat position where 3 and 4 coincide. Hence the situation is the one depicted
in Figure 17 (recall that 1 and 2 are symmetric with respect to the line 56).

We now show that, in this situation, the octahedron is actually rigid, so this case can never
happen. In fact, we prove that the constraints derived from the flat realization, together with the
fact that we have six lozenges, are not compatible with the orthogonality of the planes 1256 and
3456. To show this, we focus on the dihedral angle at the edge 23: using the constraints from
the flat realization, we can fix (up to scaling) vertex 2 to be at (0,0,0), vertex 3 to be at (b,0,0) (for
some b ∈R>0 \{2}) for the whole motion; we parametrize vertex 5 as (1,−r cos(t ),r sin(t )) for some
r ∈R>0, so vertex 6 has coordinates ( b

2−b , br
2−b ,0); see Figure 18.

However, a computation shows that the inner product between two normal vectors to the
planes 356 and 256 during the motion is not 0 for any choice of b and r . This is not compatible
with the fact that the planes 1256 and 3456 are orthogonal.
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π−β
1

3 = 4

6

5

2
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π−β

Figure 17. Flat positions of an octahedron obtained by applying the reduction process
twice. This case, actually, does never occur.

2 3

5

6

β

β

Figure 18. To show that the case of two reductions does not occur, we focus n the dihedral
angle at edge 23: in the flat position, the angles 3̂25 and 3̂26 are equal, and the vertices 3, 5,
and 6 are collinear.

Assume now that only 3,4,5,6 are coplanar. By what we said before, this means we applied the
reduction process only once. Then the eight edges incident to 1 or 2 are simple. The remaining
four edges can either be simple or be double. We distinguish two cases.

(Case A) All edges are simple. By Rule R5 we are again in Case (2,2,2), now with four lozenges
(namely 3 , 4 , 5 , and 6 ) and two rhomboids or lozenges (namely 1 and 2 ). Since we are
in Case (2,2,2), we have two flat realizations. In one of them, the vertices 1 and 2 coincide.
In the other, using the fact that 3 , 4 , and 5 are lozenges, we have that 3, 4, 5, and 6 are
collinear. In this realization, then 1 and 2 are symmetric with respect to the line 3456.

We show that the plane quadrilateral 12 is a parallelogram or an antiparallelogram.
Let C1 and C356 be the projections of the motion to pyramid 1 and vertices 3,5,6
respectively. The positions of vertices 3,5,6 in a general realization in C356 determine the
dihedral angle at the the edge 13. Since this edge is simple, there is (up to isometries) a
unique realization in C1 restricting to the same positions of 3,5,6. In particular, given
the positions of the vertices 3,5,6 of the plane quadrilateral 12, the position of 4 is
determined; and similarly for the other three choices of two incident edges of the plane
quadrilateral. One can check that this is possible only if the plane quadrilateral 12 is a
parallelogram or an antiparallelogram.

Consider the flat realization of the octahedron where the four vertices 3, 4, 5, and 6 are
collinear. Because the plane quadrilateral 12 is an antiparallelogram or a parallelogram, it
follows that the edges 35 and 46 are equal in length. Because the pyramid 1 is a rhomboid
or a lozenge, it follows that the angles at 1 in the two triangles 135 and 146 are equal
— they could not be supplementary because this would contradict the collinearity of 3,
4, 5, and 6. Hence, the triangles 135 and 146 have one side in common, the opposite
angle in common, and the normal height in common. It follows that the two triangles are
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congruent. It follows that, for all realizations, the footpoint of vertex 1 to the plane lies
on the symmetry line of the antiparallelogram or in the midpoint of the parallelogram,
depending whether the plane quadrilateral 12 is an antiparallelogram or a parallelogram.
Then the footpoint of vertex 1 lies in the symmetry line of the plane antiparallelogram 12
or in the midpoint of the parallelogram, also for the original motion. The same holds
for the footpoint of vertex 2, analogously. The case where 12 is a parallelogram yields
a convex octahedron, which cannot be flexible by Cauchy’s theorem. It follows that the
original motion, before the reduction process, is plane-symmetric.

(Case B) The four edges are double. By Rule R5 we have four deltoids and two rhomboids or
lozenges, thus we are in Case (4,2,2). Then the plane quadrilateral 12 is an antiparallelo-
gram, and the footpoint of vertex 1 to the plane lies on the symmetry line of the antipar-
allelogram. Say we had before reduced by replacing 2 by the mirror of 1 at the plane 3456.
Then the footpoint of vertex 1 lies in the symmetry line of the plane antiparallelogram 12,
also for the original octahedron. The same holds for the footpoint of vertex 2, analogously.
It follows that the original motion is plane-symmetric.

This concludes the proof of Theorem 9, once we accept the rules introduced so far.

Remark 37. An example of Case A where the quadrilateral 12 is an antiparallelogram is the
following labeling of an octahedron

`13 = `14 = `23 = `24 = 20,

`15 = `16 = `25 = `26 = 13,

`35 = `46 = 11,

`36 = `45 = 21.

The motion compatible with this labeling is an instance of all three Bricard types. It has two
plane symmetries, one by the plane through 3, 4, 5, 6, and another by the plane intersecting
orthogonally the symmetry line of the antiparallelogram, which makes it plane-symmetric. The
line reflection making it line-symmetric is the composition of the two plane reflections. See
Figure 19 for an example.

Figure 19. An example of a motion which is an instance of all three Bricard types.
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5. From the space to the sphere

Now that we showed that the classification of motions of the octahedron can be achieved once
we accept the rules introduced in Section 4, we are left with the task of explaining why the rules
are correct.

We start by reducing the problem of flexibility of octahedra to a problem of flexibility of graphs
on the sphere, as in [18, 19, 29]. For each realization in 3-space of an octahedron compatible with
a given edge labeling, the normalized vectors of the edges define a realization of points on the
unit sphere. Notice that a priori there are two unit vectors on the sphere corresponding to the
realization of an edge; we will explain in the next paragraph how to resolve this ambiguity. For any
face of the octahedron, the angle between two edge vectors is determined by the edge lengths of
the realization of the octahedron. Let us define Gedg to be the graph whose vertices are the edges
of Goct, and where two vertices are connected by an edge when the corresponding edges in Goct

belong to the same face of the octahedron (see Figure 20).

{1,3}

{1,4} {1
,5

}

{1
,6

}

{2,3}

{2,4} {2,5}

{2,6}

{3,5}

{3,6}

{4,5}

{4
,6

}

Figure 20. The graphGedg: its vertices are the edges of the octahedron, and two vertices are
adjacent if they come from the same face of the octahedron.

From the previous discussion, we get that a labeling for the edges of Goct induces a labeling of
the edges of Gedg given by the cosine of the angles between edge vectors belonging to the same
face. In formulas, if λ is a labeling for Goct, then the induced labeling for Gedg is the map:

({i , j }, {m, j }) 7→ −
λ2

{i ,m} −λ2
{i , j } −λ2

{m, j }

2λ{i , j }λ{m, j }
, where {i , j }, {m, j } ∈ Eoct .

Hence, there is a bijective correspondence, modulo translations, between realizations of the
octahedron in 3-space compatible with λ and realizations of the edge graph Gedg on the unit
sphere compatible with the labeling induced by λ.

The choice of the normalized vector corresponding to an edge in Goct is not unique and
depends on an orientation of the edges of the octahedron (any orientation is, in principle, fine).
Recall that we have already fixed an orientation in Definition 26; from now on, we always refer
to this choice of orientation. Hence, given a realization ρ : {1, . . . , 6} −→ R3 of Goct, for each edge
{i , j } ∈ Eoct we define the point q{i , j } in the unit sphere to be the one such that

ρ(i )−ρ( j ) = `i j q{i , j } ,

where we recall from Definition 26 that `i j > 0 if (i , j ) is an oriented edge in~Goct, and `i j =−` j i .
Hence, if ρ is a realization of Goct compatible with a labeling λ, then the map that associates

{i , j } 7→ q{i , j } for all {i , j } ∈ Eoct =Vedg
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is the induced realization of Gedg on the unit sphere.
Notice that, once we have a triangle in the octahedron, the labeling induced on the unit vectors

of the edges forces the three points on the unit sphere to lie on the same great circle. Therefore,
realizations of Gedg induced by realizations of Goct look like the one in Figure 21.

the octahedron in 3-space compatible with λ and realizations of the edge graph Gedg

on the unit sphere compatible with the labeling induced by λ.
The choice of the normalized vector corresponding to an edge in Goct is not unique
and depends on an orientation of the edges of the octahedron (any orientation is, in
principle, fine). Recall that we have already fixed an orientation in Definition 4.4;
from now on, we always refer to this choice of orientation. Hence, given a realization
ρ : {1, . . . , 6} −→ R3 of Goct, for each edge {i, j} ∈ Eoct we define the point q{i,j} in
the unit sphere to be the one such that

ρ(i)− ρ(j) = `ij q{i,j} ,

where we recall from Definition 4.4 that `ij > 0 if (i, j) is an oriented edge in ~Goct,
and `ij = −`ji. Hence, if ρ is a realization of Goct compatible with a labeling λ then
the map that associates

{i, j} 7→ q{i,j} for all {i, j} ∈ Eoct = Vedg

is the induced realization of Gedg on the unit sphere.
Notice that, once we have a triangle in the octahedron, the labeling induced on the
unit vectors of the edges forces the three points on the unit sphere to lie on the same
great circle. Therefore, realizations of Gedg induced by realizations of Goct look like
the one in Figure 21.

Figure 21: A realization of Gedg in S2 (on the right) induced by one of Goct in R3 (on
the left).

The paper [GGLS19] contains necessary criteria for the flexibility of any graph on
a sphere, as well as a detailed analysis of spherical quadrilaterals; these arise in the
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Figure 21. A realization ofGedg in S2 (on the right) induced by one ofGoct inR3 (on the left).

The paper [15] contains necessary criteria for the flexibility of any graph on a sphere, as well
as a detailed analysis of spherical quadrilaterals; these arise in the current paper by applying
the procedure discussed in this section to realizations of a pyramid. The technique in [15]
requires to extend to the complex numbers many notions we encountered so far: realizations,
flexes, motions, and also the unit sphere. Therefore, from now on, realizations of Goct are maps
ρ : {1, . . . , 6} −→ C3, and two realizations are considered congruent if they differ by a complex
isometry, which is given by the action of a complex orthogonal matrix followed by a complex
translation. However, we still focus on real-valued labelings. Compatibility of a realization ρ with
a labeling λ now means that〈

ρ(i )−ρ( j ),ρ(i )−ρ( j )
〉=λ2

{i , j } for all {i , j } ∈ Eoct ,

where 〈·, ·〉 is considered just as a quadratic form, and not a scalar product. Flexes and motions
are then defined as in Section 2. The complexification of the unit sphere is denoted by

S2
C := {

(x, y, z) ∈C3∣∣x2 + y2 + z2 = 1
}

,

so realizations ofGedg are maps Vedg −→ S2
C

. Two such realizations are congruent if they differ by a
complex orthogonal matrix. As in the spatial case, labelings are real-valued functions Eedg −→R.
Compatibility of a realization in S2

C
with a labeling is again tested via the standard quadratic

form 〈·, ·〉, which in the real setting gives the cosine of the angle between two unit vectors. As
we see from their definition, the construction of the points q{i , j } starting from a realization
of Goct carries over the complex numbers. Recall, however, that the numbers `i j are always real.
Flexes and motions of graphs on the complex sphere are defined analogously to their spatial
counterparts.

From the discussion and the construction in this section, we then obtain that a realization
of Goct has a flex in C3 if and only if the corresponding induced realization of Gedg has a flex in S2

C
.

6. Justification of flexibility functions and their rules

This section provides geometric counterparts of the notions of octahedral and pyramidal flex-
ibility functions introduced in Section 4.1, and gives justifications for the rules in Sections 4.3
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and 4.4. The needed theory is the one developed by the authors in [15] about flexibility of graphs
on the sphere, together with a new finding related to Rule R2. The latter concerns a connection
between positivity of flexibility functions and linear conditions on the edge lengths of realizations
in a motion of an octahedron. We recall here the main concepts of [15] and refer to that work for
proofs and precise constructions.

The geometric counterparts of flexibility functions arise as follows. First of all, we define what
we mean by configuration space of a labeling of an octahedron. This notion makes it possible
to consider “realizations up to isometries” as an algebraic variety, and so it makes it possible to
use the tools of algebraic geometry to study it. It turns out that these varieties are not compact,
and there are several possible ways to compactify them. By doing this, we add “points at infinity”
to the configuration space, namely, points that do not correspond to realizations. We call these
points bonds.

We then show that a motion of an octahedron determines a positive-dimensional irreducible
component of the configuration space with special properties. Hence, the existence of a motion
implies the existence of bonds. Although they do not correspond to realizations, they still carry
deep geometric information: by extracting it, we are able to explain the rules we stated in
Section 4.

The idea is that bonds can be thought as intersections of the compactification of the config-
uration space with a “boundary” of the whole space of possible configurations of points on the
2-sphere. This boundary is composed of different components, each of which can be codified by
either an oriented quadrilateral if we consider the whole octahedron, or an oriented pyramid in
the case we are focusing on a single pyramid. The configuration space intersects each of these
components with a certain multiplicity, which gives the value of the flexibility function at the
corresponding oriented quadrilateral or pyramid.

From the discussion of Section 5, we see that the motions of an octahedron can be studied in
terms of motions of a graph on the 2-sphere. We now describe the notion of configuration space
and its compactification for realizations of graphs on the sphere, as it is introduced in [15]. This
is accomplished by noticing that it is possible to associate to each general n-tuple of points in S2

C

a 2n-tuple of points in P1
C

in such a way that two n-tuples on the sphere differ by a complex
rotation (namely, by an element in SO3(C)) if and only if the corresponding two 2n-tuples in P1

C

are PGL(2,C)-equivalent. The association works as follows: consider S2
C

as the affine part of a
smooth quadric in P3

C
, which is covered by two families of lines; given a point O ∈ S2

C
, we can

consider the two projective lines in S2
C

passing through O; each of these two lines intersects the
plane at infinity in a single point; the two points that we obtain are called the left and right lift
of O, respectively. The left and right lift belong to the intersection of the projective closure of S2

C

with the plane at infinity, which is a smooth plane conic, hence isomorphic to P1
C

. This means
that we can consider general realizations on the complex unit sphere, up to complex rotations,
as points in the moduli space M0,2n of 2n distinct points on the projective line. Moreover, one
notices that constraints in terms of spherical distances on S2

C
can be translated into relations

among the lifts in P1
C

in terms of their cross-ratios. Therefore, one can encode realizations of
graphs on the sphere compatible with a given labeling by algebraic subvarieties of M0,2n . This
moduli space is non-compact, and a possible (projective) compactification is provided by the so-
called moduli space of rational stable curves with marked points, introduced by Knudsen and
Mumford, and denoted M 0,2n . In this way, it is possible to assign to each graph G = (V ,E),
together with a labeling λ : E −→ R, a projective variety CG inside M 0,2|V | whose intersection
with M0,2|V | encodes the realizations of G in S2

C
compatible with λ, up to rotations.

Definition 38. Given a graph G = (V ,E) and a labeling λ : E −→ R, the projective variety CG ⊆
M 0,2|V | constructed in [15] is called the configuration space of G in S2

C
compatible with λ.

Since the labeling λ takes real values, the variety CG is real as well. The components of CG that
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intersect M0,2|V | in infinitely many elements are called motion representatives of G. The reason
for this name is that elements in M0,2|V | can be considered as representatives of the orbits of
realizations of G in S2

C
under the action of rotations.

Given this premise, we can define the notion of bond of a motion representative.

Definition 39. Given a graph G and a labeling λ, the points in

CG ∩
(
M 0,2|V | \M0,2|V |

)
are called the bonds of G, and if K ⊆ CG is a motion representative, bonds of G that lie in K are
called bonds of K . Since CG is a real variety and there are no real points on M 0,2|V | \M0,2|V |, bonds
come in complex conjugate pairs.

The following is one of the main results of [15].

Proposition 40. A motion on S2
C

of a graph G determines at least a bond.

Proof. A motion on S2
C

of a graph G implies the existence of a motion representative. In fact,
in a motion we have infinitely many pairwise non-congruent realizations, and they determine
infinitely many distinct elements of M0,2|V | that belong to the same component of CG . This
motion representative, in turn, must intersect M 0,2|V | \ M0,2|V | because of the results of [15],
and hence determines at least a bond. �

It is interesting to notice that also Connelly, in the introduction of [13], highlights the fact that
extending the field to the complex numbers and “going to infinity” (as we do here with bonds)
may help understanding the geometric properties of flexible objects.

Let us instantiate the previous constructions to our situation. Given a labeling of an octahe-
dron, we can construct the corresponding labeling forGedg and then determine the configuration
space CGedg . Motions of the octahedron determine motion representatives in CGedg . We formalize
an intuitive statement, namely, that octahedra can have at most one degree of freedom:

Proposition 41. Motion representatives in CGedg are one-dimensional.

Proof. By construction, motion representatives are at least one-dimensional. If they were two-
dimensional, we could add an edge to the octahedron and obtain a graph with a realization in R3

having a flex. However, the latter graph is rigid, since it is a union of tetrahedra. �

Justification of the objects

Now we are ready to explain why we introduced oriented quadrilaterals, oriented pyramids, and
flexibility functions in Section 4.

From Section 5, we know that an octahedron has a motion if and only if the induced labeling
for the graph Gedg has a compatible motion on the sphere. This means that when we have a
motion of an octahedron, we get bonds for Gedg.

The presence of bonds imposes combinatorial restrictions to graphs in terms of colorings,
which arise as follows. Let us again consider an arbitrary graph G = (V ,E) on n vertices. The
boundary M 0,2n \ M0,2n is constituted of divisors (i.e., subvarieties of codimension 1) that are
denoted by D I , J , where (I , J ) is a partition of the set {P1, . . . , Pn ,Q1, . . . , Qn} of marked points —
we denote the marked points in this way to recall that we interpret them as left and right lifts of
points on S2

C
. If the configuration curve CG meets a divisor D I , J , then the partition (I , J ) induces

a coloring on the graph G as follows: an edge {i , j } of G is red if at least three of {Pi ,P j ,Qi ,Q j }
belong to I ; it is blue otherwise. Properties of the moduli space M 0,2n imply that in each of
these colorings there is no path of length 3 in which the colors are alternated and all 3-cycles are
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monochromatic. For this reason, these colorings are called NAP (for Not Alternating Path) if they
are surjective. The main result about NAP-colorings in [15] is that their presence characterizes
flexibility on the sphere: a graph G admits a flex if and only if G admits a NAP-coloring.

Let us now describe the NAP-colorings of the graph Gedg. We will see that these colorings are
in bijection with quadrilaterals in Goct. To make the notation easier, from now on and for the
rest of the paper we denote the marked points on the stable curves of M 0,24 not by Pu ,Qu for
u ∈ {1, . . . , 12}, but rather by Pi j , P j i for {i , j } ∈ Eoct, with i < j , since the vertices ofGedg are labeled
by pairs of indices.

Definition 42. Each of the three quadrilaterals in Goct determines a NAP-coloring of Gedg as
follows. There are exactly four vertices of Gedg given by the edges of the quadrilateral. A direct
inspection shows that those four vertices form a disconnecting set for Gedg, namely, if they are
removed, the resulting graph has two connected components. One then gets a NAP-coloring by
coloring all the edges with their endpoints in the same component by the same color; see Figure 22.

Figure 22. The three NAP-colorings of Gedg induced by the three quadrilaterals in Goct.

By sorting out all the cases, helped by the fact that there are several triangles in Gedg, which
must be monochromatic in a NAP-coloring, one proves the following result.

Proposition 43. The only NAP-colorings of Gedg are those induced by the three quadrilaterals
in Goct as in Definition 42.

Remark 44. There are 16 divisors D I , J inducing the same NAP-coloring. For example, if we
consider the quadrilateral 56, then one of these divisors is given by

I = {P5∗,P∗5,P13,P23,P14,P24} and J = {P6∗,P∗6,P31,P32,P41,P42} ,

where ∗ takes all the values in {1,2,3,4}. The other divisors are obtained by swapping the pairs
(P13,P31), (P23,P32), (P14,P41), and (P24,P42). Hence we get a total of 48 = 16×3 divisors that can
be intersected by the configuration space in M 0,24 of Gedg compatible with a given labeling.

By examining the shape of the partitions (I , J ), we get the following graphical description of
the divisors D I ,J .

Proposition 45. Let mn be a quadrilateral in Goct, where mn ∈ {12,34,56}. There is a bi-
jection between the divisors D I ,J inducing the NAP-coloring determined by mn and the set
of orientations of mn. The bijection works as follows. After possibly swapping I and J, write
I = {Pm∗,P∗m ,Pt1 s1 , . . . , Pt4 s4 }, then {t1, s1}, . . . , {t4, s4} are the edges of the (undirected) 4-cycle mn.
We then declare that D I ,J determines the orientations (t1, s1), . . . , (t4, s4) of the edges of mn; see Fig-
ure 10 for the quadrilateral corresponding to the example in Remark 44.
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Hence Proposition 45 explains why in Section 4 we considered oriented quadrilaterals of Goct:
they codify the divisors D I ,J that may intersect the motion representatives in the configuration
space CGedg of a labeling of Gedg.

Definition 46. Given a motion of an octahedron, the value of the corresponding octahedral
flexibility function at an oriented quadrilateral is the degree of the divisor on K cut out by D I , J ,
where

• K ⊂CGedg is the motion representative corresponding to the motion of the octahedron and
• D I , J is the boundary divisor corresponding to the oriented quadrilateral.

Recall that K is a curve by Proposition 41, and so it makes sense to compute the degree of a divisor
on it.

To explain the origin of oriented pyramids, notice that if we apply the reduction from the space
to the sphere described in Section 5 to a realization of a pyramid v , and we take into account only
the edges incident to v , we obtain a 4-cycle on the sphere. If we take as graph G a 4-cycle, whose
vertices are {1,2,3,4} and whose edges are {{1,2}, {2,3}, {3,4}, {1,4}}, then the moduli space where
its configuration space lives is M 0,8. Let us, for a moment, switch back to the notation Pu , Qu for
the marked points of stable curves, just to make the notation in this particular case less heavy.
There are four divisors D I , J in M 0,8 given by the partitions

I = {
P1,Q1,P2,P4

}
, J = {

P3,Q3,Q2,Q4
}

,

I = {
P2,Q2,P1,P3

}
, J = {

P4,Q4,Q1,Q3
}

,

I = {
P1,Q1,P2,Q4

}
, J = {

P3,Q3,Q2,P4
}

,

I = {
P2,Q2,P1,Q3

}
, J = {

P4,Q4,Q1,P3
}

.

By swapping the P ’s with the Q’s in the previous partitions, we obtain four other divisors, which
are the complex conjugates of the previous ones. Let us focus on the I -part of the partition: we
see that we always have a unique pair (Pk ,Qk ). If k is even, we say that the divisor is even (e),
while we say that it is odd (o) if k is odd. Moreover, we see that in the I -part we have another pair
of marked points of the form either (Pi ,P j ) or (Pi ,Q j ). In the first case we say that the divisor is
unmixed (u), while in the second case we say that the divisor is mixed (m). Hence, to specify one
of these four divisors, it is enough to specify whether it is even or odd, and unmixed or mixed.
Therefore, we denote these divisors by Dom, Dou, Dem, and Deu.

Now we can go back to our usual notation for marked points and discuss the situation for
all pyramids in the octahedron. Recall that in Figure 8 we fixed the convention about even and
odd edges of the six pyramids of the octahedron, which correspond to the six quadrilaterals
in Gedg. Here “even” and “odd” are just conventional adjectives that come from the situation
described above, where the vertex set is {1,2,3,4}. In the case of Gedg, the vertex set is constituted
of unordered pairs of numbers, and the adjectives “even” and “odd” are not related to the parity of
these numbers. This convention is summarized in Figure 23; one can notice that it is equivariant
with respect to cyclic permutations of the vertices (1,4,5,2,3,6) of the octahedron.

With these choices, we see, for example, that if we consider the pyramid 1 , then the odd mixed
divisor D1

om is given by the following partition:

I = (P14,P41,P15,P61) and J = (P13,P31,P51,P16) .

Again as in the case of the whole octahedron, the notion of oriented pyramid codifies the infor-
mation contained in the I -part of the partition determined by one of the four divisors associ-
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Figure 23. Definitions of even and odd vertices for each of the six quadrilaterals in Gedg.

ated with a pyramid in the following way. As we saw, the I -part of such a partition associated to a
pyramid v is of the form:

I =
Pva ,Pav ,

Pvu

or

Puv

,
Pv w

or

Pw v

 .

If b is the vertex such that {a,b} is a non-edge of Goct, then the pyramid v is the one induced by
the vertices v, a,b,u, w . The two oriented edges of this subgraph, forming the oriented pyramid,
are then (v,u) (or (u, v)) and (v, w) (or (w, v)). For example, the oriented pyramid associated to
the divisor D1

om is P .
Now the definition of the pyramidal flexibility function is similar to the case of the octahedral

flexibility function. Here we use the fact that the general theory of moduli spaces developed by
Knudsen and Mumford ensures that, given a pyramid v , then there is a well-defined regular map
πv : M 0,24 −→M 0,8 forgetting all marked points but the 8 related to the pyramid v .

Definition 47. Given a motion of an octahedron, the value of the corresponding pyramidal
flexibility function at an oriented pyramid supported on a pyramid v is the degree of the divisor
on πv (K ) cut out by the divisor in M 0,8 corresponding to the oriented pyramid, where K ⊂CGedg is
the motion representative corresponding to the motion of the octahedron. Recall that K is a curve
by Proposition 41, and so πv (K ) is a curve as well, therefore it makes sense to compute the degree of
a divisor on it.

Justification of Rule R1

This rule summarizes the content of [15, Section 4.1]. In fact, motions of pyramids determine
motions of quadrilaterals on the sphere, and the reference describes their behavior, concerning
in particular their intersection with the divisors in M 0,8.

Justification of Rule R2

Rule R2 gives necessary conditions for the edge lengths of realizations in a motion of an octahe-
dron. Notice that Mikhalëv in [21] obtains the same conditions for any suspension whose equator
is a cycle5. The first author who discussed these relations for octahedra was, to our knowledge,
Lebesgue.

5A suspension is a polyhedron whose combinatorial structure is the one of a double pyramid.
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Let us suppose, for simplicity, that a motion representative meets the divisor D I , J in M 0,24

described in Remark 44. All other situations can be obtained from this one by a cyclic permutation
of the vertices of Goct and a different choice in the orientation of the edges.

Let q{i , j } be the point in the sphere S2
C

determined by the edge {i , j } in Goct as described in
Section 5. Let us first clarify the relation between q{i , j } and the two marked points Pi j and P j i

corresponding to it in the stable curves with marked points of CGedg . When the marked points

belong to a stable curve that is not in the boundary of M 0,24, we can recover the coordinates
of q{i , j } from the ones of Pi j and of P j i . Let us suppose that Pi j = (ui j : vi j ) and P j i = (u j i : v j i )
(here we think about them as points in P1

C
). The point q{i , j } is essentially the image of (Pi j ,P j i )

under the Segre embedding P1 ×P1 −→ P3. We need to be a little cautious here, since we should
not use the “standard” map(

ui j : vi j ), (u j i : v j i
) 7→ (

ui j u j i : ui j v j i : vi j u j i : vi j v j i
)

but rather (
ui j : vi j

)
,
(
u j i : v j i

) 7→ (
ui j u j i : vi j v j i : ui j v j i + vi j u j i : ui j v j i − vi j u j i

)
.

In fact, our choice of coordinates should be such that the points where Pi j = P j i correspond
to the plane at infinity (this justifies the choice of the last coordinates), and moreover the origin
should be the polar of the plane at infinity with respect to the polarity induced by the quadric that
is the image of P1×P1. This second requirement is needed because otherwise the affine points of
the sphere do not form the set of unit vectors for (the complexification of) the Euclidean norm.
Hence we get the following expression for the vector q{i , j }:

q{i , j } =
(

ui j u j i

ui j v j i − vi j u j i
,

vi j v j i

ui j v j i − vi j u j i
,

ui j v j i + vi j u j i

ui j v j i − vi j u j i

)
. (4)

Since the quadrilateral 56 in Goct forms a closed loop, we get the following condition, where `i j is
the (signed) length of the edge {i , j }:

`13 q{1,3} +`23 q{2,3} +`24 q{2,4} +`14 q{1,4} = 0. (5)

Our goal is to express the condition of Equation (5) in local coordinates of the moduli space M 0,8

obtained by forgetting all marked points of the form P5,∗, P∗,5, P6,∗, and P∗,6, where ∗ takes all
the values in {1,2,3,4}. Once we have done that, we can restrict the equation to the (projection
of the) divisor D I , J and obtain a necessary condition on the numbers `i j . We make the following
choice of local coordinates for M 0,8:

P13 = (1 : 0) , P31 = (0 : 1) , P14 = (x1 : 1) , P41 = (z : x2) ,

P23 = (1 : 1) , P32 = (z : 1) , P24 = (x3 : 1) , P42 = (z : x4) .

Notice that, with this choice of coordinates, {z = 0} is a local equation for the projection of the
divisor D I ,J on M0,8. By using this choice of coordinates in Equation (4) and by substituting the
expressions for the {q{i , j }} in Equation (5), we get three equations given by rational functions
in z, x1, . . . , x4 and the lengths `13, . . . , `14. Cleaning the denominators and saturating by them,
the obtained polynomial equations yields equations that can be restricted to the projection of
the divisor D I , J by imposing z = 0. Once we eliminate the variables6 z, x1, . . . , x4, we are left with
a single equation, namely

`13 +`23 +`24 +`14 = 0.

This equation is precisely the one prescribed by Rule R2.

6This and the previous operations can be performed by a computer algebra system such as Maple, Mathematica, or
SageMath.
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All equations arising from other choices of divisors D I ,J can be obtained from this one,
remembering that `i j =−` j i .

Justification of Rule R3

This rule follows from the fact that motion representatives K ⊂ CGedg determined by motions of
an octahedron are real varieties, and so the degree of the divisor cut out on K by a divisor D I , J

equals the degree of the divisor cut out on K by its conjugate D I , J . One then notices that complex
conjugation interchanges the marked points Pi j and P j i , and so D I , J determines the same
quadrilateral of D I , J but with opposite orientation of the edges.

Justification of Rule R4

Fix a motion of an octahedron, its corresponding motion representative K ⊆ CGedg and a pyra-

mid v . By assumption, we know that the pyramid v is simple. Letπv : M 0,24 −→M 0,8 be the pro-
jection that forgets all marked points except the ones related to v . The fact that the pyramid v is
simple implies that the restriction πv |K is birational. As recalled in Section 5, there are 4 divisors
(together with their complex conjugates) that are relevant for us, namely {Dv

om,Dv
ou,Dv

em,Dv
eu}.

For each of them, we can use the following elementary fact from algebraic geometry: if f : X −→ Y
is a birational morphism between projective curves, and E is a divisor on Y , then the degree of E
equals the degree of the pullback of E via f . By applying this fact to each of the four divisors, we
get the following equations: ∑

πv (D I , J )=Dv

deg
(
D I , J |K

)= deg
(
Dv |πv (K )

)
,

for each Dv ∈ {Dv
om,Dv

ou,Dv
em,Dv

eu}. Thus, we obtain equations linking values of the octahedral
flexibility function and of the pyramidal flexibility function. Because of the choice of the notation
we made so far, which is equivariant under cyclic permutations of the indices (1,4,5,2,3,6), in
order to compute all the 6 × 4 = 24 equations, it is enough to compute the equations for the
values at oriented pyramids supported on the pyramid 1 ; the other equations are obtained by
cyclic permutations of the numerical indices. Therefore, for each divisor in M 0,8, say D1

om, we
need to compute the divisors D I , J in M 0,24 that project to Dv

om via πv . Since D1
om is given by the

partition
I 1

om = (P14,P41,P15,P61) and J 1
om = (P13,P31,P51,P16) ,

it is enough to compute all the partitions (I , J ) of the vertices of Gedg that extend the parti-
tion (I 1

om, J 1
om). There is exactly one such partition:

I = (P4∗,P∗4,P15,P61,P25,P62) and J = (P3∗,P∗3,P51,P16,P52,P26) .

The computations for the other divisors in M 0,8 are reported in Table 2. From this table we see
that the rule yielding the equations is the same as the graphical procedure in Rule R4.

Justification of Rule R5

This follows from [15, Section 4.1]: the multiplicities of the edges in this paper correspond to the
degrees of the maps r k`

i in the reference.
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Table 2. Derivation of graphical procedure in Rule R4.
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