17 research outputs found

    Improving Society and the Planet: Sustainability and Fashion Post-Pandemic

    Get PDF
    The COVID-19 pandemic has exposed the vulnerability of our ecosystem and demonstrated a crucial need to address sustainability across the fashion supply chain, including the end-use consumer. As consumers become more conscious and demand sustainable fashion, the question of whether the pandemic has shaped such behaviors for long-term transitions remains unanswered. This qualitative study aimed to understand whether the COVID-19 pandemic has created a societal shift in individual attitudes toward sustainable fashion, whether it can help to motivate long-term sustainable consumption practices, and whether positive psychology plays a role in this context. With online survey data collected from 154 US consumers, summative content analysis and thematic analysis results revealed that as consumers continued to be puzzled by what constitutes sustainability, their pro-sustainability attitudes and behaviors did not evolve as claimed by prior literature. However, not only positive emotions associated with care and concern motivated consumers’ pro-sustainability, but indeed post-purchase positive feelings of contentment and altruism were revealed, affirming the need for marketing messages to incorporate positive psychology perspectives to motivate long-term sustainable fashion consumption practices

    Theia: Faint objects in motion or the new astrometry frontier

    Get PDF

    Theia: Faint objects in motion or the new astrometry frontier

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Theia: Faint objects in motion or the new astrometry frontier

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Theia: Faint objects in motion or the new astrometry frontier

    Get PDF
    In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on relative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 % of the mission time was dedicated to an open observatory for the wider community to propose complementary science cases. With its unique metrology system and "point and stare" strategy, Theia's precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaia's accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the camera's focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric measurements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision
    corecore