19 research outputs found

    Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling

    Get PDF
    The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability

    DEK Regulates Hematopoietic Stem Engraftment and Progenitor Cell Proliferation

    Full text link
    DEK is a biochemically distinct protein that is generally found in the nucleus, where it is vital to global heterochromatin integrity. However, DEK is also secreted by cells (eg, macrophages) and influences other adjacent cells (eg, acts as a chemoattractant for certain mature blood cells). We hypothesized that DEK may modulate functions of hematopoietic stem (HSCs) and progenitor (HPCs) cells. C57Bl/6 mice were used to demonstrate that absolute numbers and cycling status of HPCs (colony forming unit-granulocyte macrophage [CFU-GM], burst forming unit-erythroid [BFU-E], and colony forming unit-granulocyte erythroid macrophage megakaryocyte [CFU-GEMM]) in bone marrow (BM) and spleen were significantly enhanced in DEK -/- as compared with wild-type (WT) control mice. Moreover, purified recombinant DEK protein inhibited colony formation in vitro by CFU-GM, BFU-E, and CFU-GEMM from WT BM cells and human cord blood (CB) cells in a dose-dependent fashion, demonstrating that DEK plays a negative role in HPC proliferation in vitro and in vivo. Suppression was direct acting as determined by inhibition of proliferation of single isolated CD34+ CB cells in vitro. In contrast, DEK -/- BM cells significantly demonstrated reduced long term competitive and secondary mouse repopulating HSC capacity compared with WT BM cells, demonstrating that DEK positively regulates engrafting capability of self-renewing HSCs. This demonstrates that DEK has potent effects on HSCs, HPCs, and hematopoiesis, information of biological and potential clinical interest.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90478/1/scd-2E2011-2E0451.pd

    DEK, a nuclear protein, is chemotactic for hematopoietic stem/progenitor cells acting through CXCR2 and Gαi signaling

    Get PDF
    Few cytokines/growth modulating proteins are known to be chemoattractants for hematopoietic stem (HSC) and progenitor cells (HPC); stromal cell-derived factor 1α (SDF1α/CXCL12) being the most potent known such protein. DEK, a nuclear DNA-binding chromatin protein with hematopoietic cytokine-like activity, is a chemotactic factor attracting mature immune cells. Transwell migration assays were performed to test whether DEK serves as a chemotactic agent for HSC/HPC. DEK induced dose- and time-dependent directed migration of lineage negative (Lin–) Sca-1+ c-Kit+ (LSK) bone marrow (BM) cells, HSCs and HPCs. Checkerboard assays demonstrated that DEK's activity was chemotactic (directed), not chemokinetic (random migration), in nature. DEK and SDF1α compete for HSC/HPC chemotaxis. Blocking CXCR2 with neutralizing antibodies or inhibiting Gαi protein signaling with Pertussis toxin pretreatment inhibited migration of LSK cells toward DEK. Thus, DEK is a novel and rare chemotactic agent for HSC/HPC acting in a direct or indirect CXCR2 and Gαi protein-coupled signaling-dependent manner

    A Molecularly Engineered Antiviral Banana Lectin Inhibits Fusion and is Efficacious Against Influenza Virus Infection in Vivo

    Get PDF
    There is a strong need for a new broad-spectrum antiinfluenza therapeutic, as vaccination and existing treatments are only moderately effective. We previously engineered a lectin, H84T banana lectin (H84T), to retain broad-spectrum activity against multiple influenza strains, including pandemic and avian, while largely eliminating the potentially harmful mitogenicity of the parent compound. The amino acid mutation at position 84 from histidine to threonine minimizes the mitogenicity of the wild-type lectin while maintaining antiinfluenza activity in vitro. We now report that in a lethal mouse model H84T is indeed nonmitogenic, and both early and delayed therapeutic administration of H84T intraperitoneally are highly protective, as is H84T administered subcutaneously. Mechanistically, attachment, which we anticipated to be inhibited by H84T, was only somewhat decreased by the lectin. Instead, H84T is internalized into the late endosomal/lysosomal compartment and inhibits virus–endosome fusion. These studies reveal that H84T is efficacious against influenza virus in vivo, and that the loss of mitogenicity seen previously in tissue culture is also seen in vivo, underscoring the potential utility of H84T as a broad-spectrum antiinfluenza agent

    High levels of DEK autoantibodies may predict early flare following cessation of anti-TNF therapy in juvenile idiopathic arthritis

    Get PDF
    Introduction The nuclear oncoprotein DEK is a biochemically distinct, pro-inflammatory protein that is a chemoattractant for neutrophils and T-cells. High levels of DEK autoantibodies have been found in several autoimmune diseases including juvenile idiopathic arthritis (JIA), but their role in disease pathogenesis is unclear. Objectives Since DEK and DEK autoantibodies can contribute to the development of immune complexes and joint inflammation, we suggest that DEK antibody levels can predict disease flare with discontinuation of anti-TNF therapy. Methods In 16 pediatric rheumatology centers, sera samples were collected from 137 children with polyarticular JIA on anti-TNF therapy. Therapy was stopped after 6 months for patients with clinically inactive disease (CID). Disease activity was then monitored for 14 months or until disease flare. DEK antibody levels were measured by ELISA in sera collected at time of enrollment, disease flare off therapy, or end of study. DEK antibody levels relative to healthy controls were calculated by area under the curve (AUC), expressed as unit-free ratios. Results 103 female and 34 male patients with polyarticular JIA were enrolled, mean age 11.3 years and disease duration of 5.0 years (77% were on etanercept, 18% adalimumab, 5% infliximab, and 40% concurrent methotrexate). 31 patients discontinued the study for various reasons, including loss of CID during therapy. 39 patients flared within 14 months of stopping therapy, but 67 subjects had no flare within those 14 months. In 89 patients’ samples collected at the end of the study or at time of flare, DEK antibody levels compared to healthy controls ranged from -0.69 (some patients had lower antibody levels than did healthy controls) to 0.83, mean difference of 0.068 (Q1-Q3 of -0.25-0.28 and 0.025 (SD, 0.39). High levels of DEK antibodies, mean and SD of 0.164 ± 0.39, with 95% confidence interval of (0.02, 0.31), were detected in 30 of the patients that flared within 14 months as compared to lower levels of DEK antibodies (-0.05 ± 0.39, 95% confidence interval of (-0.15, 0.05)) measured in 59 of the patients with no disease flare for 14 months (Student-T, P=0.016). Thus, patients that experience flare within 14 months of stopping anti-TNF therapy have significantly increased levels of DEK antibodies compared to patients that maintained their CID till the end of the study. Conclusion In children with polyarticular JIA on anti-TNF therapy that maintain CID for at least 6 months while on therapy, high DEK antibody levels may correlate with flare within the first 14 months after stopping therapy. This study suggests that DEK antibody levels might predict the outcome of discontinuation of anti-TNF therap

    Tumors of the nasal pyramid: treatment with grafts and follow-up

    No full text
    Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non‐histone nuclear phosphoprotein initially identified as a putative proto‐oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long‐term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long‐term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems. S TEM C ells 2013;31:1447–1453Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99608/1/1443_ftp.pd

    Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma

    No full text
    Background Cell therapies for solid tumors are thwarted by the hostile tumor microenvironment (TME) and by heterogeneous expression of tumor target antigens. We address both limitations with a novel class of chimeric antigen receptors based on plant lectins, which recognize the aberrant sugar residues that are a ‘hallmark’ of both malignant and associated stromal cells. We have expressed in T cells a modified lectin from banana, H84T BanLec, attached to a chimeric antigen receptor (H84T-CAR) that recognizes high-mannose (asparagine residue with five to nine mannoses). Here, we tested the efficacy of our novel H84T CAR in models of pancreatic ductal adenocarcinoma (PDAC), intractable tumors with aberrant glycosylation and characterized by desmoplastic stroma largely contributed by pancreatic stellate cells (PSCs).Methods We transduced human T cells with a second-generation retroviral construct expressing the H84T BanLec chimeric receptor, measured T-cell expansion, characterized T-cell phenotype, and tested their efficacy against PDAC tumor cells lines by flow cytometry quantification. In three-dimensional (3D) spheroid models, we measured H84T CAR T-cell disruption of PSC architecture, and T-cell infiltration by live imaging. We tested the activity of H84T CAR T cells against tumor xenografts derived from three PDAC cell lines. Antitumor activity was quantified by caliper measurement and bioluminescence signal and used anti-human vimentin to measure residual PSCs.Results H84T BanLec CAR was successfully transduced and expressed by T cells which had robust expansion and retained central memory phenotype in both CD4 and CD8 compartments. H84T CAR T cells targeted and eliminated PDAC tumor cell lines. They also disrupted PSC architecture in 3D models in vitro and reduced total tumor and stroma cells in mixed co-cultures. H84T CAR T cells exhibited improved T-cell infiltration in multicellular spheroids and had potent antitumor effects in the xenograft models. We observed no adverse effects against normal tissues.Conclusions T cells expressing H84T CAR target malignant cells and their stroma in PDAC tumor models. The incorporation of glycan-targeting lectins within CARs thus extends their activity to include both malignant cells and their supporting stromal cells, disrupting the TME that otherwise diminishes the activity of cellular therapies against solid tumors

    The DEK Nuclear Autoantigen Is a Secreted Chemotactic Factor

    No full text
    The nuclear DNA-binding protein DEK is an autoantigen that has been implicated in the regulation of transcription, chromatin architecture, and mRNA processing. We demonstrate here that DEK is actively secreted by macrophages and is also found in synovial fluid samples from patients with juvenile arthritis. Secretion of DEK is modulated by casein kinase 2, stimulated by interleukin-8, and inhibited by dexamethasone and cyclosporine A, consistent with a role as a proinflammatory molecule. DEK is secreted in both a free form and in exosomes, vesicular structures in which transcription-modulating factors such as DEK have not previously been found. Furthermore, DEK functions as a chemotactic factor, attracting neutrophils, CD8(+) T lymphocytes, and natural killer cells. Therefore, the DEK autoantigen, previously described as a strictly nuclear protein, is secreted and can act as an extracellular chemoattractant, suggesting a direct role for DEK in inflammation

    Inhibition of Ebola Virus by a Molecularly Engineered Banana Lectin.

    No full text
    Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013-2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50-80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or therapeutic regimen
    corecore