27 research outputs found

    Scale issues in soil moisture modelling: problems and prospects

    Get PDF
    Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Soil moisture: A central and unifying theme in physical geography

    No full text
    Soil moisture is a critical component of the earth system and plays an integrative role among the various subfields of physical geography. This paper highlights not just how soil moisture affects atmospheric, geomorphic, hydrologic, and biologic processes but that it lies at the intersection of these areas of scientific inquiry. Soil moisture impacts earth surface processes in such a way that it creates an obvious synergistic relationship among the various subfields of physical geography. The dispersive and cohesive properties of soil moisture also make it an important variable in regional and microclimatic analyses, landscape denudation and change through weathering, runoff generation and partitioning, mass wasting, and sediment transport. Thus, this paper serves as a call to use research in soil moisture as an integrative and unifying theme in physical geography. © The Author(s) 2010
    corecore