2,750 research outputs found
Statistics of the dissipated energy in driven single-electron transitions
We analyze the distribution of heat generated in driven single-electron
transitions and discuss the related non-equilibrium work theorems. In the
adiabatic limit, the heat distribution is shown to become Gaussian, with the
heat noise that, in spite of thermal fluctuations, vanishes together with the
average dissipated energy. We show that the transitions satisfy Jarzynski
equality for arbitrary drive and calculate the probability of the negative heat
values. We also derive a general condition on the heat distribution that
generalizes the Bochkov-Kuzovlev equality and connects it to the Jarzynski
equality.Comment: 5 pages, 2 figure
Hamiltonian Derivations of the Generalized Jarzynski Equalities under Feedback Control
In the presence of feedback control by "Maxwell's demon," the second law of
thermodynamics and the nonequilibrium equalities such as the Jarzynski equality
need to be generalized. In this paper, we derive the generalized Jarzynski
equalities for classical Hamiltonian dynamics based on the Liouville's theorem,
which is the same approach as the original proof of the Jarzynski equality
[Phys. Rev. Lett. 78, 2690 (1997)]. The obtained equalities lead to the
generalizations of the second law of thermodynamics for the Hamiltonian systems
in the presence of feedback control.Comment: Proceedings of "STATPHYS - Kolkata VII", November 26-30, 2010,
Kolkata, Indi
From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare
<p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p>
<p> </p
Efficiency of a Brownian information machine
A Brownian information machine extracts work from a heat bath through a
feedback process that exploits the information acquired in a measurement. For
the paradigmatic case of a particle trapped in a harmonic potential, we
determine how power and efficiency for two variants of such a machine operating
cyclically depend on the cycle time and the precision of the positional
measurements. Controlling only the center of the trap leads to a machine that
has zero efficiency at maximum power whereas additional optimal control of the
stiffness of the trap leads to an efficiency bounded between 1/2, which holds
for maximum power, and 1 reached even for finite cycle time in the limit of
perfect measurements.Comment: 9 pages, 2 figure
Influence of corruption on economic growth rate and foreign investments
In order to investigate whether government regulations against corruption can
affect the economic growth of a country, we analyze the dependence between
Gross Domestic Product (GDP) per capita growth rates and changes in the
Corruption Perceptions Index (CPI). For the period 1999-2004 on average for all
countries in the world, we find that an increase of CPI by one unit leads to an
increase of the annual GDP per capita by 1.7 %. By regressing only European
transition countries, we find that CPI = 1 generates increase of the
annual GDP per capita by 2.4 %. We also analyze the relation between foreign
direct investments received by different countries and CPI, and we find a
statistically significant power-law functional dependence between foreign
direct investment per capita and the country corruption level measured by the
CPI. We introduce a new measure to quantify the relative corruption between
countries based on their respective wealth as measured by GDP per capita.Comment: 8 pages, 3 figures, elsart styl
Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon
In mathematical physical analyses of Szilard's engine and Maxwell's demon, a
general assumption (explicit or implicit) is that one can neglect the energy
needed for relocating the piston in Szilard's engine and for driving the trap
door in Maxwell's demon. If this basic assumption is wrong, then the
conclusions of a vast literature on the implications of the Second Law of
Thermodynamics and of Landauer's erasure theorem are incorrect too. Our
analyses of the fundamental information physical aspects of various type of
control within Szilard's engine and Maxwell's demon indicate that the entropy
production due to the necessary generation of information yield much greater
energy dissipation than the energy Szilard's engine is able to produce even if
all sources of dissipation in the rest of these demons (due to measurement,
decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical
meaning of control-information and the related entropy production. Criticism
of recent experiments adde
Between Thought and Expression, a Magnetoencephalography Study of the "Tip-of-the-Tongue" Phenomenon
“Tip-of-the-tongue” (TOT) is the phenomenon associated with the inaccessibility of a known word from memory. It is universally experienced, increases in frequency with age, and is most common for proper nouns. It is a good model for the symptom of anomia experienced much more frequently by some aphasic patients following brain injury. Here, we induced the TOT state in older participants while they underwent brain scanning with magnetoencephalography to investigate the changes in oscillatory brain activity associated with failed retrieval of known words. Using confrontation naming of pictures of celebrities, we successfully induced the TOT state in 29% of trials and contrasted it with two other states: “Know” where the participants both correctly recognized the celebrity's face and retrieved their name and “Don't Know” when the participants did not recognize the celebrity. We wished to test Levelt's influential model of speech output by carrying out two analyses, one epoching the data to the point in time when the picture was displayed and the other looking back in time from when the participants first articulated their responses. Our main findings supported the components of Levelt's model, but not their serial activation over time as both semantic and motor areas were identified in both analyses. We also found enduring decreases in the alpha frequency band in the left ventral temporal region during the TOT state, suggesting ongoing semantic search. Finally, we identified reduced beta power in classical peri-sylvian language areas for the TOT condition, suggesting that brain regions that encode linguistic memories are also involved in their attempted retrieval
Designing optimal discrete-feedback thermodynamic engines
Feedback can be utilized to convert information into useful work, making it
an effective tool for increasing the performance of thermodynamic engines.
Using feedback reversibility as a guiding principle, we devise a method for
designing optimal feedback protocols for thermodynamic engines that extract all
the information gained during feedback as work. Our method is based on the
observation that in a feedback-reversible process the measurement and the
time-reversal of the ensuing protocol both prepare the system in the same
probabilistic state. We illustrate the utility of our method with two examples
of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy
Heat Transfer Operators Associated with Quantum Operations
Any quantum operation applied on a physical system is performed as a unitary
transformation on a larger extended system. If the extension used is a heat
bath in thermal equilibrium, the concomitant change in the state of the bath
necessarily implies a heat exchange with it. The dependence of the average heat
transferred to the bath on the initial state of the system can then be found
from the expectation value of a hermitian operator, which is named as the heat
transfer operator (HTO). The purpose of this article is the investigation of
the relation between the HTOs and the associated quantum operations. Since, any
given quantum operation on a system can be realized by different baths and
unitaries, many different HTOs are possible for each quantum operation. On the
other hand, there are also strong restrictions on the HTOs which arise from the
unitarity of the transformations. The most important of these is the Landauer
erasure principle. This article is concerned with the question of finding a
complete set of restrictions on the HTOs that are associated with a given
quantum operation. An answer to this question has been found only for a subset
of quantum operations. For erasure operations, these characterizations are
equivalent to the generalized Landauer erasure principle. For the case of
generic quantum operations however, it appears that the HTOs obey further
restrictions which cannot be obtained from the entropic restrictions of the
generalized Landauer erasure principle.Comment: A significant revision is made; 33 pages with 2 figure
- …
