27 research outputs found

    Erratum

    Get PDF

    Anaplastic Lymphoma Kinase Spares Organ Growth during Nutrient Restriction in Drosophila

    Get PDF
    SummaryDeveloping animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.PaperCli

    Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone

    Get PDF
    The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously

    Amino Acids and the Humoral Regulation of Growth

    No full text

    p21<sup>ras</sup> couples the T cell antigen receptor to extracellular signal-regulated kinase 2 in T lymphocytes

    No full text
    It has previously been shown in T cells that stimulation of protein kinase C (PKC) or the T cell antigen receptor (TCR) induces the rapid accumulation of the active guanosine triphosphate-bound form of p21ras. These stimuli also induce the activation of extracellular signal-regulated kinase 2 (ERK2), a serine/threonine kinase that is rapidly activated via a kinase c ascade in response to a variety of growth factors in many cell types. In this study, we show that p21ras is a component of the TCR signaling pathway that controls ERK2 activation. In the human Jurkat T cell line, transient expression of constitutively active p21ras induces ERK2 activation, measured as an increase in the ability of an ERK2-tag reporter protein to phosphorylate myelin basic protein. Thus, constitutively active p21ras bypasses the requirement for PKC activation or TCR triggering to induce ERK2 activation. In addition, activation of PKC or the TCR produces signals that cooperate with activated p21ras to stimulate ERK2. Conversely, expression of a dominant negative mutant of ras, Ha-ras N17, blocks ERK2 activation after TCR stimulation, indicating that endogenous p21ras function is necessary for the TCR-stimulated ERK2 activation. Taken together, these results demonstrate that the activation of p21ras is both necessary and sufficient to induce ERK2 activation in T cells.Peer Reviewe
    corecore