6,570 research outputs found

    Field-induced domain wall propagation velocity in magnetic nanowires

    Full text link
    A thory of field-induced domain wall (DW) propagation is developed. The theory not only explains why a DW in a defect-free nanowire must propagate at a finite velocity, but also provides a proper definition of DW propagation velocity. This definition, valid for an arbitrary DW structure, allows one to compute the instantaneous DW velocity in a meaningful way even when the DW is not moving as a rigid body. A new velocity-field formula beyond the Walker breakdown field, which is in excellent agreement with both experiments and numerical simulations, is derived

    Aerosol optical depth retrieval over land from two angle view satellite radiometry

    Get PDF
    Atmospheric aerosol particles play an important role in the Earth’s radiation balance. They are considered one of the largest uncertainties in today’s climate modelling. To a large extent, these uncertainties are caused by the lack of aerosol data on a global scale. Due to the short lifetimes of aerosols in the troposphere (hours to a week), and the many different sources with different spatial extents and emissions, the aerosol is highly variable in both space and time. Satellite remote sensing only can provide the global coverage and the spatial and temporal resolution to measure the inhomogeneous aerosol fields

    Bound States of the q-Deformed AdS5 x S5 Superstring S-matrix

    Full text link
    The investigation of the q deformation of the S-matrix for excitations on the string world sheet in AdS5 x S5 is continued. We argue that due to the lack of Lorentz invariance the situation is more subtle than in a relativistic theory in that the nature of bound states depends on their momentum. At low enough momentum |p|<E the bound states transform in the anti-symmetric representation of the super-algebra symmetry and become the solitons of the Pohlmeyer reduced theory in the relativistic limit. At a critical momentum |p|=E they become marginally unstable, and at higher momenta the stable bound states are in the symmetric representation and become the familiar magnons in the string limit as q->1. This subtlety fixes a problem involving the consistency of crossing symmetry with the relativistic limit found in earlier work. With mirror kinematics, obtained after a double Wick rotation, the bound state structure is simpler and there are no marginally unstable bound states.Comment: 25 page

    HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    Get PDF
    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.</jats:p

    Computational study of glucosepane–water and hydrogen bond formation: an electron topology and orbital analysis

    Get PDF
    The collagen protein provides tensile strength to the extracellular matrix in addition to localising cells, proteins and protein cofactors. Collagen is susceptible to a build up of glycation modifications as a result of an exceptionally long half-life. Glucosepane is a collagen cross-linking advanced glycation end product; the structural and mechanical effects of glucosepane are still the subjects of much debate. With the prospect of an ageing population, the management and treatment of age-related diseases is becoming a pressing concern. One area of interest is the isolation of hydrated glucosepane, which has yet to be reported at an atomistic level. This study presents a series of glucosepane–water complexes within an implicit aqueous environment. Electronic structure calculations were performed using density functional theory and a high level basis set. Hydrogen bonds between glucosepane and explicit water were identified by monitoring changes to covalent bonds, calculating levels of electron donation from Natural Bonding Orbital analysis and the detection of bond critical points. Hydrogen bond strength was calculated using second-order perturbation calculations. The combined results suggest that glucosepane is very hydrophilic, with the imidazole feature being energetically more attractive to water than either hydroxyl group, although all hydrogen bonds, regardless of bond strength, were electrostatic in nature. Our results are in growing support of an earlier hypothesis that cross-links may result in an increase in interstitial water retention, which would permit the collagen fibril to swell, thereby potentially affecting the tensile and compression properties and biological function of connective tissues

    Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional One-Component Plasma

    Full text link
    Vortices in thin-film superconductors are often modelled as a system of particles interacting via a repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov) crystalline state for such particles is unstable at any finite temperature against proliferation of screened disclinations. The correlation length of crystalline order is predicted to grow as 1/T\sqrt{1/T} as the temperature TT is reduced to zero, in excellent agreement with our simulations of this two-dimensional system.Comment: 3 figure
    • …
    corecore