11,321 research outputs found

    Assessing the performance of protective winter covers for outdoor marble statuary: pilot investigation

    Get PDF
    Outdoor statuary in gardens and parks in temperate climates has a tradition of being covered during the winter, to protect against external conditions. There has been little scientific study of the environmental protection that different types of covers provide. This paper examines environmental conditions provided by a range of covers used to protect marble statuary at three sites in the UK. The protection required depends upon the condition of the marble. Although statues closely wrapped and with a layer of insulation provide good protection, this needs to be considered against the potential physical damage of close wrapping a fragile deteriorated surface

    Morphology and biomechanics of the nests of the Common Blackbird Turdus merula

    Get PDF
    Capsule Common blackbirds select different materials, with varying biomechanical properties, to construct different parts of their nest. Aims This study tested the hypothesis that outer components of a nest have a more structural role and so are stronger than materials used to line the cup. Methods Blackbird nests were measured prior to being dismantled to isolate structural components which were tested for mechanical strength and rigidity. Results Outer nest wall materials were significantly thicker, stronger and more rigid than materials in the inner structural wall or the cup lining. In the vertical plane materials used in the structural wall did not differ. By contrast, lining materials from the bottom of the nest cup were significantly thicker, stronger and more rigid than materials from the top of the cup. Conclusion Blackbirds use different materials in nest construction roles suited to their properties and so may be able to recognise the structural properties of these materials. Materials on the outside of the nest may have a key structural role during construction

    Torsion–rotation global analysis of the first three torsional states (νt = 0, 1, 2) and terahertz database for methanol

    Get PDF
    Stimulated by recent THz measurements of the methanol spectrum in one of our laboratories, undertaken in support of NASA programs related to the Herschel Space Observatory (HSO) and the Atacama Large Millimeter Array (ALMA), we have carried out a global analysis of available microwave and high-resolution infrared data for the first three torsional states (νt = 0, 1, 2), and for J values up to 30. This global fit of approximately 5600 frequency measurements and 19 000 Fourier transform far infrared (FTFIR) wavenumber measurements to 119 parameters reaches the estimated experimental measurement accuracy for the FTFIR transitions, and about twice the estimated experimental measurement accuracy for the microwave, submillimeter-wave, and terahertz transitions. The present fit is essentially a continuation of our earlier work, but we have greatly expanded our previous data set and have added a large number of new torsion–rotation interaction terms to the Hamiltonian in our previously used computer program. The results, together with a number of calculated (but unmeasured) transitions, including their line strength, estimated uncertainty, and lower state energy, are made available in the supplementary material as a database formatted to be useful for astronomical searches. Some discussion of several open spectroscopic problems, e.g., (i) an improved notation for the numerous parameters in the torsion–rotation Hamiltonian, (ii) possible causes of the failure to fit frequency measurements to the estimated measurement uncertainty, and (iii) pitfalls to be avoided when intercomparing apparently identical parameters from the internal axis method and the rho axis method are also given

    Limits on τ lepton-flavor violating decays into three charged leptons

    Get PDF
    A search for the neutrinoless, lepton-flavor violating decay of the τ lepton into three charged leptons has been performed using an integrated luminosity of 468  fb^(-1) collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8–3.3)×10^(-8) at 90% confidence level

    Measurement of the γγ^*→η_c transition form factor

    Get PDF
    We study the reaction e^+e^-→e^+e^-η_c, η_c→K_SK^±π^∓ and obtain η_c mass and width values 2982.2±0.4±1.6  MeV/c^2 and 31.7±1.2±0.8  MeV, respectively. We find Γ(η_c→γγ)B(ηc→KK π)=0.374±0.009±0.031  keV, and measure the γγ^*→η_c transition form factor in the momentum transfer range from 2 to 50  GeV^2. The analysis is based on 469  fb^(-1) of integrated luminosity collected at PEP-II with the BABAR detector at e^+e^- center-of-mass energies near 10.6 GeV

    Observation of magnetic fragmentation in spin ice

    Get PDF
    Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2_2Zr2_2O7_7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses

    Get PDF
    Spatial correlations of microscopic fluctuations are investigated via real-space experiments and computer simulations of colloidal glasses under steady shear. It is shown that while the distribution of one-particle fluctuations is always isotropic regardless of the relative importance of shear as compared to thermal fluctuations, their spatial correlations show a marked sensitivity to the competition between shear-induced and thermally activated relaxation. Correlations are isotropic in the thermally dominated regime, but develop strong anisotropy as shear dominates the dynamics of microscopic fluctuations. We discuss the relevance of this observation for a better understanding of flow heterogeneity in sheared amorphous solids.Comment: 6 pages, 4 figure
    corecore