199 research outputs found

    Heterologous Processing and Export of the Bacteriocins Pediocin PA-1 and Lactococcin A in Lactococcus Lactis:A Study with Leader Exchange

    Get PDF
    The bacteriocins pediocin PA-1 and lactococcin A are synthesized as precursors carrying N-terminal extensions with a conserved cleavage site preceded by two glycine residues in positions -2 and -1. Each bacteriocin is translocated through the cytoplasmic membrane by an integral membrane protein of the ABC cassette superfamily which, in the case of pediocin PA-1, has been shown to possess peptidase activity responsible for proteolytic cleavage of the pre-bacteriocin. In each case, another integral membrane protein is essential for bacteriocin production. In this study, a two-step PCR approach was used to permutate the leaders of pediocin PA-1 and lactococcin A. Wild-type and chimeric pre-bacteriocins were assayed for maturation by the processing/export machinery of pediocin PA-1 and lactococcin A. The results show that pediocin PA-1 can be efficiently exported by the lactococcin machinery whether it carries the lactococcin or the pediocin leader. It can also compete with wild-type lactococcin A for the lactococcin machinery. Pediocin PA-1 carrying the lactococcin A leader or lactococcin A carrying that of pediocin PA-1 was poorly secreted when complemented with the pediocin PA-1 machinery, showing that the pediocin machinery is more specific for its bacteriocin substrate. Wild-type pre-pediocin and chimeric pre-pediocin were shown to be processed by the lactococcin machinery at or near the double-glycine cleavage site. These results show the potential of the lactococcin LcnC/LcnD machinery as a maturation system for peptides carrying double-glycine-type amino-terminal leaders

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    The Dutch nationwide trauma registry:The value of capturing all acute trauma admissions

    Get PDF
    Introduction: Twenty years ago the Dutch trauma care system was reformed by the designating 11 level one Regional trauma centres (RTCs) to organise trauma care. The RTCs set up the Dutch National Trauma Registry (DNTR) to evaluate epidemiology, patient distribution, resource use and quality of care. In this study we describe the DNTR, the incidence and main characteristics of Dutch acutely admitted trauma patients, and evaluate the value of including all acute trauma admissions compared to more stringent criteria applied by the national trauma registries of the United Kingdom and Germany. Methods: The DNTR includes all injured patients treated at the ED within 48 hours after trauma and consecutively followed by direct admission, transfers to another hospital or death at the ED. DNTR data on admission years 2007-2018 were extracted to describe the maturation of the registry. Data from 2018 was used to describe the incidence rate and patient characteristics. Inclusion criteria of the Trauma Audit and Research (TARN) and the Deutsche Gesellschaft für Unfallchirurgie (DGU) were applied on 2018 DNTR data. Results: Since its start in 2007 a total of 865,460 trauma cases have been registered in the DNTR. Hospital participation increased from 64% to 98%. In 2018, a total of 77,529 patients were included, the median age was 64 years, 50% males. Severely injured patients with an ISS≥16, accounted for 6% of all admissions, of which 70% was treated at designated RTCs. Patients with an ISS≤ 15were treated at non-RTCs in 80% of cases. Application of DGU or TARN inclusion criteria, resulted in inclusion of respectively 5% and 32% of the DNTR patients. Particularly children, elderly and patients admitted at non-RTCs are left out. Moreover, 50% of ISS≥16 and 68% of the fatal cases did not meet DGU inclusion criteria Conclusion: The DNTR has evolved into a comprehensive well-structured nationwide population-based trauma register. With 80,000 inclusions annually, the DNTR has become one of the largest trauma databases in Europe The registries strength lies in the broad inclusion criteria which enables studies on the burden of injury and the quality and efficiency of the entire trauma care system, encompassing all trauma‐receiving hospitals

    Attributable mortality to radon exposure in Galicia, Spain. Is it necessary to act in the face of this health problem?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radon is the second risk factor for lung cancer after tobacco consumption and therefore it is necessary to know the burden of disease due to its exposure. The objective of this study is to estimate radon-attributable lung cancer mortality in Galicia, a high emission area located at the Northwest Spain.</p> <p>Methods</p> <p>A prevalence-based attribution method was applied. Prevalence of tobacco use and radon exposure were obtained from a previously published study of the same area. Attributable mortality was calculated for each of six possible risk categories, based on radon exposure and smoking status. Two scenarios were used, with 37 Bq/m<sup>3 </sup>and 148 Bq/m<sup>3 </sup>as the respective radon exposure thresholds. As the observed mortality we used lung cancer mortality for 2001 from the Galician mortality registry.</p> <p>Results</p> <p>Mortality exclusively attributable to radon exposure ranged from 3% to 5% for both exposure thresholds, respectively. Attributable mortality to combined exposure to radon and smoking stood at around 22% for exposures above 148 Bq/m<sup>3</sup>. Applying the United States Environmental Protection Agency (EPA) action level, radon has a role in 25% of all lung cancers.</p> <p>Conclusions</p> <p>Although the estimates have been derived from a study with a relatively limited sample size, these results highlight the importance of radon exposure as a cause of lung cancer and its effect in terms of disease burden. Radon mitigation activities in the study area must therefore be enforced.</p

    Intranasal Delivery of Influenza Subunit Vaccine Formulated with GEM Particles as an Adjuvant

    Get PDF
    Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization
    corecore