7 research outputs found

    Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana

    Get PDF
    The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants

    Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation In Arabidopsis thaliana

    Get PDF
    The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.Plant science

    Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants

    No full text
    The extensive characterization of plant genes and genome sequences summed to the continuous development of biotechnology tools, has played a major role in understanding biological processes in plant model species. The challenge for the near future is to generate methods and pipelines for an efficient transfer of this knowledge to economically important crops and other plant species. In the case of flower bulbs, which are economically very important for the ornamental industry, flowering time control and vegetative propagation constitute the most relevant processes for agronomical improvements. Those processes have been reasonably studied in reference species, making them excellent candidates for translational investigations in bulbous plant species. The approaches that can be taken for the transfer of biological knowledge from model to non-model species can be roughly categorized as "bottom-up" or "top-down". The former approach usually goes from individual genes to systems, also known as a "gene-by-gene" approach. It assumes conservation of molecular pathways and therefore makes use of sequence homology searches to identify candidate genes. "Top-down" methodologies go from systems to genes, and are e.g. based on large scale transcriptome profiling via heterologous microarrays or RNA sequencing, followed by the identification of associations between phenotypes, genes, and gene expression patterns and levels. In this review, examples of the various knowledge-transfer approaches are provided and pros and cons are discussed. Due to the latest developments in transgenic research and next generation sequencing and the emerging of systems biology as a matured research field, transfer of knowledge concerning flowering time and vegetative propagation capacity in bulbous species are now within sigh

    Prevalence of transcription factors in ascomycete and basidiomycete fungi

    No full text
    Background: Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results: In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions: This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla

    Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana

    Get PDF
    The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants

    Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control

    No full text
    Floral induction in Tulipa gesneriana and Lilium longiflorum is triggered by contrasting temperature conditions, high and low temperature, respectively. In Arabidopsis, the floral integrator FLOWERING LOCUS T (FT), a member of the PEBP (phosphatidyl ethanolamine-binding protein) gene family, is a key player in flowering time control. In this study, one PEBP gene was identified and characterized in lily (LlFT) and three PEBP genes were isolated from tulip (TgFT1, TgFT2 and TgFT3). Overexpression of these genes in Arabidopsis thaliana resulted in an early flowering phenotype for LlFT and TgFT2, but a late flowering phenotype for TgFT1 and TgFT3. Overexpression of LlFT in L. longiflorum also resulted in an early flowering phenotype, confirming its proposed role as a flowering time-controlling gene. The tulip PEBP genes TgFT2 and TgFT3 have a similar expression pattern in tulip, but show opposite effects on the timing of flowering in Arabidopsis. Therefore, the difference between these two proteins was further investigated by interchanging amino acids thought to be important for the FT function. This resulted in the conversion of phenotypes in Arabidopsis upon overexpressing the substituted TgFT2 and TgFT3 genes, revealing the importance of these interchanged amino acid residues. Based on all obtained results, we hypothesize that LlFT is involved in creating meristem competence to flowering-related cues in lily, and TgFT2 is considered to act as a florigen involved in the floral induction in tulip. The function of TgFT3 remains unclear, but, based on our observations and phylogenetic analysis, we propose a bulb-specific function for this gene
    corecore