28,634 research outputs found
Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation
Quantum stress-energy tensors of fields renormalized on a Schwarzschild
background violate the classical energy conditions near the black hole.
Nevertheless, the associated equilibrium thermodynamical entropy by
which such fields augment the usual black hole entropy is found to be positive.
More precisely, the derivative of with respect to radius, at fixed
black hole mass, is found to vanish at the horizon for {\it all} regular
renormalized stress-energy quantum tensors. For the cases of conformal scalar
fields and U(1) gauge fields, the corresponding second derivative is positive,
indicating that has a local minimum there. Explicit calculation
shows that indeed increases monotonically for increasing radius and
is positive. (The same conclusions hold for a massless spin 1/2 field, but the
accuracy of the stress-energy tensor we employ has not been confirmed, in
contrast to the scalar and vector cases). None of these results would hold if
the back-reaction of the radiation on the spacetime geometry were ignored;
consequently, one must regard as arising from both the radiation
fields and their effects on the gravitational field. The back-reaction, no
matter how "small",Comment: 19 pages, RevTe
Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown
impressive power conversion efficiencies of above 20%. However, the microscopic
mechanism of the high photovoltaic performance is yet to be fully understood.
Particularly, the dynamics of CH3NH3+ cations and their impact on relevant
processes such as charge recombination and exciton dissociation are still
poorly understood. Here, using elastic and quasi-elastic neutron scattering
techniques and group theoretical analysis, we studied rotational modes of the
CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K)
and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold
rotational symmetry of the C-N axis (C4) along with three-fold rotation around
the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is
present. Around room temperature, the characteristic relaxation times for the
C4 rotation is found to be ps while for the C3 rotation ps. The -dependent
rotational relaxation times were fitted with Arrhenius equations to obtain
activation energies. Our data show a close correlation between the C4
rotational mode and the temperature dependent dielectric permittivity. Our
findings on the rotational dynamics of CH3NH3+ and the associated dipole have
important implications on understanding the low exciton binding energy and slow
charge recombination rate in CH3NH3PbI3 which are directly relevant for the
high solar cell performance
Preparing and probing atomic number states with an atom interferometer
We describe the controlled loading and measurement of number-squeezed states
and Poisson states of atoms in individual sites of a double well optical
lattice. These states are input to an atom interferometer that is realized by
symmetrically splitting individual lattice sites into double wells, allowing
atoms in individual sites to evolve independently. The two paths then
interfere, creating a matter-wave double-slit diffraction pattern. The time
evolution of the double-slit diffraction pattern is used to measure the number
statistics of the input state. The flexibility of our double well lattice
provides a means to detect the presence of empty lattice sites, an important
and so far unmeasured factor in determining the purity of a Mott state
Meson Condensation in Dense Matter Revisited
The results for meson condensation in the literature vary markedly depending
on whether one uses chiral perturbation theory or the current-algebra-plus-PCAC
approach. To elucidate the origin of this discrepancy, we re-examine the role
of the sigma-term in meson condensation. We find that the resolution of the
existing discrepancy requires a knowledge of terms in the Lagrangian that are
higher order in density than hitherto considered.Comment: 10pages, USC(NT)-94-
Hypercritical Advection Dominated Accretion Flow
In this note we study the accretion disc that arises in hypercritical
accretion of onto a neutron star while it is in
common envelope evolution with a massive companion. In order to raise the
temperature high enough that the disc might cool by neutrino emission,
Chevalier found a small value of the -parameter, where the kinematic
coefficient of shear viscosity is , with the velocity
of sound and the disc height; namely, was necessary
for gas pressure to dominate. He also considered results with higher values of
, pointing out that radiation pressure would then predominate. With
these larger 's, the temperatures of the accreting material are much
lower, \lsim 0.35 MeV. The result is that neutrino cooling during the flow is
negligible, satisfying very well the advection dominating conditions. The low
temperature of the accreting material means that it cannot get rid of its
energy rapidly by neutrino emission, so it piles up, pushing its way through
the accretion disc. An accretion shock is formed, far beyond the neutron star,
at a radius \gsim 10^8 cm, much as in the earlier spherically symmetric
calculation, but in rotation. Two-dimensional numerical simulation shows that
an accretion disc is reformed inside of the accretion shock, allowing matter to
accrete onto the neutron star with pressure high enough so that neutrinos can
carry off the energy.Comment: 6 pages, ApJ, submitte
Extreme alpha-clustering in the 18O nucleus
The structure of the 18O nucleus at excitation energies above the alpha decay
threshold was studied using 14C+alpha resonance elastic scattering. A number of
states with large alpha reduced widths have been observed, indicating that the
alpha-cluster degree of freedom plays an important role in this N not equal Z
nucleus. However, the alpha-cluster structure of this nucleus is very different
from the relatively simple pattern of strong alpha-cluster quasi-rotational
bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced
width exceeding the single particle limit was identified at an excitation
energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are
common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for
clarity, including removal of one figur
\u3ci\u3eMedicine Meets Virtual Reality 16\u3c/i\u3e
Chapter, Validating Advanced Robot-Assisted Laparoscopic Training Task in Virtual Reality, co-authored by Nicholas Stergiou, UNO faculty member.
We humans are tribal, grouping ourselves by a multitude of criteria: physical, intellectual, political, emotional, etc. The Internet and its auxiliary technologies have enabled a novel dimension in tribal behavior during our recent past. This growing connectivity begs the question: will individuals and their communities come together to solve some very urgent global problems? At MMVR, we explore ways to harness information technology to solve healthcare problems â and in the industrialized nations we are making progress. In the developing world however, things are more challenging. Massive urban poverty fuels violence and misery. Will global networking bring a convergence of individual and tribal problem-solving? Recently, a barrel-shaped water carrier that rolls along the ground was presented, improving daily life for many people. Also the One Laptop per Child project is a good example of how the industrialized nations can help the developing countries. They produce durable and simple laptops which are inexpensive to produce. At MMVR, we focus on cutting-edge medical technology, which is generally pretty expensive. While the benefits of innovation trickle downward, from the privileged few to the broader masses, we should expand this trickle into a flood. Can breakthrough applications in stimulation, visualization, robotics, and informatics engender tools as ingeniously as the water carrier or laptop? With some extra creativity, we can design better healthcare for the developing world too.https://digitalcommons.unomaha.edu/facultybooks/1234/thumbnail.jp
Kaon Condensation in the Bound-State Approach to the Skyrme Model
We explore kaon condensation using the bound-state approach to the Skyrme
model on a 3-sphere. The condensation occurs when the energy required to
produce a falls below the electron fermi level. This happens at the
baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and
uuencode
- âŠ