1,731 research outputs found

    A case study on application of the theory of planned behaviour: predicting physical activity of adolescents in Hong Kong

    Get PDF
    Objective: The aim of this case study was to predict the physical activity intention and behaviour of secondary school students in Hong Kong by applying the Ajzen’s Theory of Planned Behaviour (TPB) and past physical activity behaviour. Methods: 486 students (250 male and 236 female), ranging in age from 11 to 18 years, were enrolled in this study. By means of self-administrated questionnaire, demographic data, past physical activity and variables of theory of planned behaviour, such as attitude, subjective norm and perceived behavioural control were measured. Results: About 75% of students did not meet the standard of the physical activity recommended by government. Male had significantly higher behavioural intention than female. The variables of theory of planned behaviour explained 53.1% of physical activity intention with significant factors of subjective norm and perceived behavioural control (PBC), increasing to 56.2% with the addition of past physical activity behaviour. When predicting physical activity behaviour, theory of planned behaviour accounted for 26.6% of the variance. The prediction was further improved by including past physical activity behaviour. Conclusions: Results of this study give evidence that the theory of planned behaviour is a useful framework for prediction of physical activity intention of adolescents in Hong Kong. Among the variables, perceived behavioural control and past behaviour played a significant role in modelling the physical activity intention and behaviour of secondary school students

    Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways

    Get PDF
    10.1371/journal.pone.0097523PLoS ONE95-POLN

    A Preliminary Study on the Efficacy of a Community-Based Physical Activity Intervention on Physical Function-Related Risk Factors for Falls among Breast Cancer Survivors

    Get PDF
    Objective The aim of this study was to examine the effects of a 6-week community-based physical activity (PA) intervention on physical function-related risk factors for falls among 56 breast cancer survivors (BCS) who had completed treatments. Design This was a single-group longitudinal study. The multimodal PA intervention included aerobic, strengthening and balance components. Physical function outcomes based on the 4-meter walk, chair stand, one-leg stance, tandem walk, and dynamic muscular endurance tests were assessed at 6-week pre-intervention (T1), baseline (T2), and post-intervention (T3). T1-T2 and T2-T3 were the control and intervention periods, respectively. Results All outcomes, except the tandem walk test, significantly improved after the intervention period (p 0.05). Based on the falls risk criterion in the one-leg stance test, the proportion at risk for falls was significantly lower after the intervention period (p = 0.04), but not after the control period. Conclusions A community-based multimodal PA intervention for BCS may be efficacious in improving physical function-related risk factors for falls, and lowering the proportion of BCS at risk for falls based on specific physical function-related falls criteria. Further larger trials are needed to confirm these preliminary findings

    Enhanced magnetocaloric effect in frustrated magnets

    Full text link
    The magnetothermodynamics of strongly frustrated classical Heisenberg antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The field induced adiabatic temperature change (dT/dH)_S is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. Theoretical predictions are confirmed with extensive Monte Carlo simulations.Comment: 7 page

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K, and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure

    Fractionalization, topological order, and cuprate superconductivity

    Full text link
    This paper is concerned with the idea that the electron is fractionalized in the cuprate high-TcT_c materials. We show how the notion of topological order may be used to develop a precise theoretical characterization of a fractionalized phase in spatial dimension higher than one. Apart from the fractional particles into which the electron breaks apart, there are non-trivial gapped topological excitations - dubbed "visons". A cylindrical sample that is fractionalized exhibits two disconnected topological sectors depending on whether a vison is trapped in the "hole" or not. Indeed, "vison expulsion" is to fractionalization what the Meissner effect ("flux expulsion") is to superconductivity. This understanding enables us to address a number of conceptual issues that need to be confronted by any theory of the cuprates based on fractionalization ideas. We argue that whether or not the electron fractionalizes in the cuprates is a sharp and well-posed question with a definite answer. We elaborate on our recent proposal for an experiment to unambiguously settle this issue.Comment: 18 pages, 7 figure

    Generator Coordinate Calculations for the Breathing-Mode Giant Monopole Resonance in Relativistic Mean Field Theory

    Get PDF
    The breathing-mode giant monopole resonance (GMR) is studied within the framework of the relativistic mean-field theory using the Generator Coordinate Method (GCM). The constrained incompressibility and the excitation energy of isoscalar giant monopole states are obtained for finite nuclei with various sets of Lagrangian parameters. A comparison is made with the results of nonrelativistic constrained Skyrme Hartree-Fock calculations and with those from Skyrme RPA calculations. In the RMF theory the GCM calculations give a transition density for the breathing mode, which resembles much that obtained from the Skyrme HF+RPA approach and also that from the scaling mode of the GMR. From the systematic study of the breathing-mode as a function of the incompressibility in GCM, it is shown that the GCM succeeds in describing the GMR energies in nuclei and that the empirical breathing-mode energies of heavy nuclei can be reproduced by forces with an incompressibility close to K=300K = 300 MeV in the RMF theory.Comment: 27 pages (Revtex) and 5 figures (available upon request), Preprint MPA-793 (March 1994
    corecore