7,794 research outputs found

    Risk of Secondary Malignant Neoplasms From Proton Therapy and Intensity-Modulated X-Ray Therapy for Early-Stage Prostate Cancer

    Get PDF
    Purpose: To assess the risk of a secondary malignant neoplasm (SMN) from proton therapy relative to intensity-modulated radiation therapy (IMRT) using X-rays, taking into account contributions from both primary and secondary sources of radiation, for prostate cancer. Methods and Materials: A proton therapy plan and a 6-MV IMRT plan were constructed for 3 patients with early-stage adenocarcinoma of the prostate. Doses from the primary fields delivered to organs at risk of developing an SMN were determined from treatment plans. Secondary doses from the proton therapy and IMRT were determined from Monte Carlo simulations and available measured data, respectively. The risk of an SMN was estimated from primary and secondary doses on an organ-by-organ basis by use of risk models from the Committee on the Biological Effects of Ionizing Radiation. Results: Proton therapy reduced the risk of an SMN by 26% to 39% compared with IMRT. The risk of an SMN for both modalities was greatest in the in-field organs. However, the risks from the in-field organs were considerably lower with the proton therapy plan than with the IMRT plan. This reduction was attributed to the substantial sparing of the rectum and bladder from exposure to the therapeutic beam by the proton therapy plan. Conclusions: When considering exposure to primary and secondary radiation, proton therapy can reduce the risk of an SMN in prostate patients compared with contemporary IMRT. © 2009 Elsevier Inc. All rights reserved

    Investigation of dose perturbations and the radiographic visibility of potential fiducials for proton radiation therapy of the prostate

    Get PDF
    Image guidance using implanted fiducial markers is commonly used to ensure accurate and reproducible target positioning in radiation therapy for prostate cancer. The ideal fiducial marker is clearly visible in kV imaging, does not perturb the therapeutic dose in the target volume and does not cause any artifacts on the CT images used for treatment planning. As yet, ideal markers that fully meet all three of these criteria have not been reported. In this study, 12 fiducial markers were evaluated for their potential clinical utility in proton radiation therapy for prostate cancer. In order to identify the good candidates, each fiducial was imaged using a CT scanner as well as a kV imaging system. Additionally, the dose perturbation caused by each fiducial was quantified using radiochromic film and a clinical proton beam. Based on the results, three fiducials were identified as good candidates for use in proton radiotherapy of prostate cancer. © 2011 Institute of Physics and Engineering in Medicine

    Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer

    Get PDF
    Proton beam radiotherapy exposes healthy tissue to stray radiation emanating from the treatment unit and secondary radiation produced within the patient. These exposures provide no known benefit and may increase a patient\u27s risk of developing a radiogenic second cancer. The aim of this study was to explore strategies to reduce stray radiation dose to a patient receiving a 76 Gy proton beam treatment for cancer of the prostate. The whole-body effective dose from stray radiation, E, was estimated using detailed Monte Carlo simulations of a passively scattered proton treatment unit and an anthropomorphic phantom. The predicted value of E was 567 mSv, of which 320 mSv was attributed to leakage from the treatment unit; the remainder arose from scattered radiation that originated within the patient. Modest modifications of the treatment unit reduced E by 212 mSv. Surprisingly, E from a modified passive-scattering device was only slightly higher (109 mSv) than from a nozzle with no leakage, e.g., that which may be approached with a spot-scanning technique. These results add to the body of evidence supporting the suitability of passively scattered proton beams for the treatment of prostate cancer, confirm that the effective dose from stray radiation was not excessive, and, importantly, show that it can be substantially reduced by modest enhancements to the treatment unit. © 2008 Institute of Physics and Engineering in Medicine

    Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer

    Get PDF
    Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied. © 2012 Institute of Physics and Engineering in Medicine

    The current status of advanced environmentanl barrier coatings for ceramic matrix composites at NASA

    Get PDF
    Please click Additional Files below to see the full abstract. Please click Download on the upper right corner to see the presentation

    Early Stage Clustering Behavior in Al-Mg-Si Alloys Observed via Time Dependent Magnetization

    Get PDF
    Time dependent magnetization of Al-0.67 at.%Mg-0.73 at.%Si, Al-1.07 at.%Mg-0.33 at.%Si and Al-1.07 at.%Mg-0.53 at.%Si alloys are presented over a range of constant temperatures between 250 and 320 K. The magnetization vs. time curves for the samples show minima for temperatures near 290 K. The observed times at which the magnetization minima occur were found to depend on both the solute concentrations and the measurement temperatures. From these results the activation energies from the Si-rich clustering stage to the Mg-Si co-clustering stage were extracted. The deduced activation energies were found to be comparable to those from the positron annihilation measurements, depending on the solute concentrations

    Key Data Gaps for Understanding Trends in Prescription Opioid Analgesic Abuse and Diversion Among Chronic Pain Patients and Nonmedical Users

    Get PDF
    Population dynamics of medical and nonmedical prescription opioid usage and adverse outcomes were modeled. Critical parameter values were determined by their amount of influence on model behavior. Results suggest that closing these data gaps would help researchers to better identify ways to reduce the risk of adverse outcomes
    corecore