231 research outputs found

    Calorimetric and Rheological Measurements of Three Commercial Thermosetting Prepreg Epoxies

    Get PDF
    The cure kinetics of three different thermosetting resins are investigated using differential scanning calorimetry and oscillatory shear rheometry. For the latter, two different types of plates are used, smooth plates and grooved plates; the latter are used to improve sample–plate contact. In addition, oscillatory compression rheology is used; however, machine compliance prevents accurate measurements at high conversions. A fractional conversion is defined based on the maximum storage modulus achieved at a given temperature, and is compared to the fractional conversion calculated from enthalpy measurements. As expected, the rates of reaction derived from these fractional conversions are very different for calorimetry and rheometry. However, the rates of reaction using the two types of plates are identical, although the grooved plates give much more reproducible storage moduli. A number of previously used mathematical expressions are employed to fit the calorimetric and rheological data, and the activation energies calculated from these fits are compared.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    Understanding hadronic gamma-ray emission from supernova remnants

    Full text link
    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added. Some typos correcte

    Specific Expression of Human Intelectin-1 in Malignant Pleural Mesothelioma and Gastrointestinal Goblet Cells

    Get PDF
    Malignant pleural mesothelioma (MPM) is a fatal tumor. It is often hard to discriminate MPM from metastatic tumors of other types because currently, there are no reliable immunopathological markers for MPM. MPM is differentially diagnosed by some immunohistochemical tests on pathology specimens. In the present study, we investigated the expression of intelectin-1, a new mesothelioma marker, in normal tissues in the whole body and in many cancers, including MPM, by immunohistochemical analysis. We found that in normal tissues, human intelectin-1 was mainly secreted from gastrointestinal goblet cells along with mucus into the intestinal lumen, and it was also expressed, to a lesser extent, in mesothelial cells and urinary epithelial cells. Eighty-eight percent of epithelioid-type MPMs expressed intelectin-1, whereas sarcomatoid-type MPMs, biphasic MPMs, and poorly differentiated MPMs were rarely positive for intelectin-1. Intelectin-1 was not expressed in other cancers, except in mucus-producing adenocarcinoma. These results suggest that intelectin-1 is a better marker for epithelioid-type MPM than other mesothelioma markers because of its specificity and the simplicity of pathological assessment. Pleural intelectin-1 could be a useful diagnostic marker for MPM with applications in histopathological identification of MPM

    Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia

    Get PDF
    Background: Daily step counts is an intuitive metric that has demonstrated success in motivating physical activity in adults and may hold potential for future public health physical activity recommendations. This review seeks to clarify the pattern of the associations between daily steps and subsequent all-cause mortality, cardiovascular disease (CVD) morbidity and mortality, and dysglycemia, as well as the number of daily steps needed for health outcomes. Methods: A systematic review was conducted to identify prospective studies assessing daily step count measured by pedometer or accelerometer and their associations with all-cause mortality, CVD morbidity or mortality, and dysglycemia (dysglycemia or diabetes incidence, insulin sensitivity, fasting glucose, HbA1c). The search was performed across the Medline, Embase, CINAHL, and the Cochrane Library databases from inception to August 1, 2019. Eligibility criteria included longitudinal design with health outcomes assessed at baseline and subsequent timepoints; defining steps per day as the exposure; reporting all-cause mortality, CVD morbidity or mortality, and/or dysglycemia outcomes; adults ≥18 years old; and non-patient populations. Results: Seventeen prospective studies involving over 30,000 adults were identified. Five studies reported on all-cause mortality (follow-up time 4-10 years), four on cardiovascular risk or events (6 months to 6 years), and eight on dysglycemia outcomes (3 months to 5 years). For each 1000 daily step count increase at baseline, risk reductions in all-cause mortality (6-36%) and CVD (5-21%) at follow-up were estimated across a subsample of included studies. There was no evidence of significant interaction by age, sex, health conditions or behaviors (e.g., alcohol use, smoking status, diet) among studies that tested for interactions. Studies examining dysglycemia outcomes report inconsistent findings, partially due to heterogeneity across studies of glycemia-related biomarker outcomes, analytic approaches, and sample characteristics. Conclusions: Evidence from longitudinal data consistently demonstrated that walking an additional 1000 steps per day can help lower the risk of all-cause mortality, and CVD morbidity and mortality in adults, and that health benefits are present below 10,000 steps per day. However, the shape of the dose-response relation is not yet clear. Data are currently lacking to identify a specific minimum threshold of daily step counts needed to obtain overall health benefit

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    The role of liquid based cytology and ancillary techniques in the peritoneal washing analysis: our institutional experience

    Get PDF
    Background The cytological analysis of peritoneal effusions serves as a diagnostic and prognostic aid for either primary or metastatic diseases. Among the different cytological preparations, liquid based cytology (LBC) represents a feasible and reliable method ensuring also the application of ancillary techniques (i.e immunocytochemistry-ICC and molecular testing). Methods We recorded 10348 LBC peritoneal effusions between January 2000 and December 2014. They were classified as non-diagnostic (ND), negative for malignancy-NM, atypical-suspicious for malignancy-SM and positive for malignancy-PM. Results The cytological diagnosis included 218 ND, 9.035 NM, 213 SM and 882 PM. A total of 8048 (7228 NM, 115SM, 705 PM) cases with histological follow-up were included. Our NM included 21 malignant and 7207 benign histological diagnoses. Our 820 SMs+PMs were diagnosed as 107 unknown malignancies (30SM and 77PM), 691 metastatic lesions (81SM and 610PM), 9 lymphomas (2SM and 7PM), 9 mesotheliomas (1SM and 8SM), 4 sarcomas (1SM and 3PM). Primary gynecological cancers contributed with 64% of the cases. We documented 97.4% sensitivity, 99.9% specificity, 98% diagnostic accuracy, 99.7% negative predictive value (NPV) and 99.7% positive predictive value (PPV). Furthermore, the morphological diagnoses were supported by either 173 conclusive ICC results or 50 molecular analyses. Specifically the molecular testing was performed for the EGFR and KRAS mutational analysis based on the previous or contemporary diagnoses of Non Small Cell Lung Cancer (NSCLC) and colon carcinomas. We identified 10 EGFR in NSCCL and 7 KRAS mutations on LBC stored material. Conclusions Peritoneal cytology is an adjunctive tool in the surgical management of tumors mostly gynecological cancers. LBC maximizes the application of ancillary techniques such as ICC and molecular analysis with feasible diagnostic and predictive yields also in controversial cases.info:eu-repo/semantics/publishedVersio

    Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology

    Get PDF
    Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations
    corecore