2,272 research outputs found

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Load-Balancing for Parallel Delaunay Triangulations

    Get PDF
    Computing the Delaunay triangulation (DT) of a given point set in RD\mathbb{R}^D is one of the fundamental operations in computational geometry. Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm that merges two partial triangulations by re-triangulating a small subset of their vertices - the border vertices - and combining the three triangulations efficiently via parallel hash table lookups. The input point division should therefore yield roughly equal-sized partitions for good load-balancing and also result in a small number of border vertices for fast merging. In this paper, we present a novel divide-step based on partitioning the triangulation of a small sample of the input points. In experiments on synthetic and real-world data sets, we achieve nearly perfectly balanced partitions and small border triangulations. This almost cuts running time in half compared to non-data-sensitive division schemes on inputs exhibiting an exploitable underlying structure.Comment: Short version submitted to EuroPar 201

    Comparison of post-treatment plasma EBV DNA with nasopharyngeal biopsy in patients after radical (chemo) radiotherapy for non-metatatic nasopharyngeal cancer

    Get PDF
    This journal suppl. entitled: Proceedings of the American Society for Radiation Oncology 56th Annual Meeting, ASTRO's 56th Annual Meeting ... 2014Oral Scientific SessionPURPOSE/OBJECTIVE(S): Random nasopharyngeal biopsy after completion of intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal cancer (NPC) is routinely practiced in Hong Kong to confirm local remission. Plasma EBV DNA is proven an accurate marker for NPC. We carried out a prospective study comparing the correlation between post-IMRT nasopharyngeal biopsy and EBV DNA, to investigate if EBV DNA can substitute biopsy to confirm local remission. MATERIALS/METHODS: Patients with non-metastatic NPC treated with definitive (chemo) IMRT diagnosed between January 2011 and March 2013 were recruited. After baseline workup ...postprin

    Acute cardiac injury after subarachnoid haemorrhage: two case reports

    Get PDF
    It is well known that cardiopulmonary complications are often associated to subarachnoid haemorrhage. For appropriate therapeutic managing it is very important to distinguish acute coronary syndrome from neurogenic myocardial injury, which is a reversible condition. Furthermore, because the hearts of brain dead patients may be utilized for therapeutic purpose, it has became of importance to rule out erroneous diagnosis of cardiac ischemia in order to avoid rejection of hearts potential suitable for transplantation

    Different definition of sarcopenia and mortality in cancer: A meta-analysis

    Get PDF
    Objectives: Sarcopenia has been an emerging theme in clinical oncology. Various definitions of sarcopenia have been proposed, but their prognostic performance have yet to be evaluated and compared. The aim of this meta-analysis is to comprehensively evaluate the performance of different cutoff definitions of sarcopenia in cancer mortality prognostication. / Methods: This is a meta-analysis. Cohort studies on lean mass and mortality published before December 20, 2017 were obtained by systematic search on PubMed, Cochrane Library, and Embase. Inclusion criteria were cohort studies reporting binary lean mass categorized according to clearly defined cutoffs, and with all-cause mortality as study outcome. Studies were stratified according to the cutoff(s) used in defining low lean mass. The cutoff-specific hazard ratios (HRs) and 95% confidence intervals (CIs) of low lean mass on cancer mortality were pooled with a random-effects model and compared. / Results: Altogether 81 studies that studied binary lean mass were included. The pooled HRs on cancer mortality using the 3 most used definitions were: 1.74 (95% CI, 1.46–2.07) using the definition proposed by International Consensus of Cancer Cachexia, 1.45 (95% CI, 1.21–1.75) using that by Martin, and 1.58 (95% CI, 1.35–1.84) using that by Prado. The associations between sarcopenia and cancer mortality using other definitions were all statistically significant, despite different estimates were observed. / Conclusions: The association of low lean mass with increased mortality was consistent across different definitions; this provides further evidence on the poorer survival in cancer patients with sarcopenia. However, further studies evaluating the performance of each definition are warranted

    Stroke from A Large Left Atrial Myxoma

    Get PDF
    A 36-year-old male involved in a car accident was found to have an embolic stroke due to a left atrial myxoma. Open heart surgery was delayed 4 weeks to decrease the risk of neurologic complications from the anticoagulation required for cardiopulmonary bypass. After resection of the myxoma, intraoperative transesophageal echocardiography found severe mitral regurgitation, which was repaired

    Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides

    Full text link
    Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminalmacrolactamring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collisioninduced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c\bullet/z from c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions {\eth}b0In{\TH}. We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z\bullet and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture

    Strained graphene structures: from valleytronics to pressure sensing

    Full text link
    Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho
    corecore