288,320 research outputs found
c-axis Raman Scattering in MgB2: Observation of a Dirty-Limit Gap in the pi-bands
Raman scattering spectra from the ac-face of thick MgB2 single crystals were
measured in zz, xz and xx polarisations. In zz and xz polarisations a threshold
at around 29 cm^{-1} forms in the below Tc continuum but no pair-breaking peak
is seen, in contrast to the sharp pair-breaking peak at around 100 cm^{-1} seen
in xx polarisation. The zz and xz spectra are consistent with Raman scattering
from a dirty superconductor while the sharp peak in the xx spectra argues for a
clean system. Analysis of the spectra resolves this contradiction, placing the
larger and smaller gap magnitudes in the sigma and pi bands, and indicating
that relatively strong impurity scattering is restricted to the pi bands.Comment: Revised manuscript accepted for publication in Physical Review
Letter
Third-order Intermodulation Reduction in Mobile Power Amplifiers by the First Stage Bias Control
In this paper, the third order intermodulation distortion (IMD3) of three-stage power amplifier (PA) is analyzed using the Volterra series. The analysis explains how the total IMD3 of the three-stage power amplifier can be reduced by the first-stage bias condition. The three-stage PA, which is fabricated using InGaP/GaAs hetero-junction bipolar transistor (HBT), operates with an optimized first driver stage bias for higher P1dB and good gain flatness. The power amplifier has been designed for 1626.5 MHz~1660.5 MHz satellite mobile communications. With π/4 DQPSK modulation signals, this PA can deliver a highly linear output power of 33 dBm from 3.6V supply voltage. At 33 dBm output power, it shows a gain of 31.9 dB, a power-added efficiency (PAE) of 39.8%, an adjacent channel power ratio (ACPR) of -28.2 dBc at a 31.25 KHz offset frequency
Analysis and design of integration formulas for a random integrand
Analysis of integration formulas and procedure for designing optimal integration formul
Development and application of a unified balancing approach with multiple constraints
The development of a general analytic approach to constrained balancing that is consistent with past influence coefficient methods is described. The approach uses Lagrange multipliers to impose orbit and/or weight constraints; these constraints are combined with the least squares minimization process to provide a set of coupled equations that result in a single solution form for determining correction weights. Proper selection of constraints results in the capability to: (1) balance higher speeds without disturbing previously balanced modes, thru the use of modal trial weight sets; (2) balance off-critical speeds; and (3) balance decoupled modes by use of a single balance plane. If no constraints are imposed, this solution form reduces to the general weighted least squares influence coefficient method. A test facility used to examine the use of the general constrained balancing procedure and application of modal trial weight ratios is also described
Material Flow Analysis: Outcome Focus (MFA:OF) for Elucidating the Role of Infrastructure in the Development of a Liveable City
Engineered infrastructures (i.e., utilities, transport & digital) underpin modern society. Delivering services via these
is especially challenging in cities where differing infrastructures form a web of interdependencies. There must be a
step change in how infrastructures deliver services to cities, if those cities are to be liveable in the future (i.e., provide
for citizen wellbeing, produce less CO2 & ensure the security of the resources they use). Material Flow Analysis
(MFA) is a useful methodology for understanding how infrastructures transfer resources to, within and from cities
and contribute to the city’s metabolism. Liveable Cities, a five-year research programme was established to identify
& test radical engineering interventions leading to liveable cities of the future. In this paper, the authors propose an
outcome-focussed variation on the MFA methodology (MFA: OF), evidenced through work on the resource flows of
Birmingham, UK. These flows include water, energy, food & carbon-intensive materials (e.g., steel, paper, glass), as
well as their associated waste. The contribution MFA: OF makes to elucidating the interactions & interdependencies
between the flows is highlighted and suggestions are made for how it can contribute to the (radical) rethinking of the
engineered infrastructure associated with such flow
- …