218,186 research outputs found
Unified description of pairing, trionic and quarteting states for one-dimensional SU(4) attractive fermions
Paired states, trions and quarteting states in one-dimensional SU(4)
attractive fermions are investigated via exact Bethe ansatz calculations. In
particular, quantum phase transitions are identified and calculated from the
quarteting phase into normal Fermi liquid, trionic states and spin-2 paired
states which belong to the universality class of linear field-dependent
magnetization in the vicinity of critical points. Moreover, unified exact
results for the ground state energy, chemical potentials and complete phase
diagrams for isospin attractive fermions with external fields
are presented. Also identified are the magnetization plateaux of
and , where is the magnetization saturation value. The
universality of finite-size corrections and collective dispersion relations
provides a further test ground for low energy effective field theory.Comment: 13 pages, 4 figure
Ferromagnetism below 10 K in Mn doped BiTe
Ferromagnetism is observed below 10 K in [Bi0.75Te0.125Mn0.125]Te. This
material has the BiTe structure, which is made from the stacking of two
Te-Bi-Te-Bi-Te blocks and one Bi-Bi block per unit cell. Crystal structure
analysis shows that Mn is localized in the Bi2 blocks, and is accompanied by an
equal amount of TeBi anti-site occupancy in the Bi2Te3 blocks. These TeBi
anti-site defects greatly enhance the Mn solubility. This is demonstrated by
comparison of the [Bi1-xMnx]Te and [Bi1-2xTexMnx]Te series; in the former, the
solubility is limited to x = 0.067, while the latter has xmax = 0.125. The
magnetism in [Bi1-xMnx]Te changes little with x, while that for
[Bi1-2xTexMnx]Te shows a clear variation, leading to ferromagnetism for x >
0.067. Magnetic hysteresis and the anomalous Hall Effect are observed for the
ferromagnetic samples.Comment: Accepted for publication in Phys. Rev.
Stability of Uniform Shear Flow
The stability of idealized shear flow at long wavelengths is studied in
detail. A hydrodynamic analysis at the level of the Navier-Stokes equation for
small shear rates is given to identify the origin and universality of an
instability at any finite shear rate for sufficiently long wavelength
perturbations. The analysis is extended to larger shear rates using a low
density model kinetic equation. Direct Monte Carlo Simulation of this equation
is computed with a hydrodynamic description including non Newtonian rheological
effects. The hydrodynamic description of the instability is in good agreement
with the direct Monte Carlo simulation for , where is the mean
free time. Longer time simulations up to are used to identify the
asymptotic state as a spatially non-uniform quasi-stationary state. Finally,
preliminary results from molecular dynamics simulation showing the instability
are presented and discussed.Comment: 25 pages, 9 figures (Fig.8 is available on request) RevTeX, submitted
to Phys. Rev.
Gravity from Quantum Information
It is suggested that the Einstein equation can be derived from Landauer's
principle applied to an information erasing process at a local Rindler horizon
and Jacobson's idea linking the Einstein equation with thermodynamics. When
matter crosses the horizon, the information of the matter disappears and the
horizon entanglement entropy increases to compensate the entropy reduction. The
Einstein equation describes an information-energy relation during this process,
which implies that entropic gravity is related to the quantum entanglement of
the vacuum and has a quantum information theoretic origin.Comment: 7 pages, revtex4-1, 2 figures, recent supporting results adde
Impedance of cylindrical antennas in plasma - A review
Cylindrical antenna impedance in linear cold or warm plasma
Origin of Superconductivity in Boron-doped Diamond
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is
investigated exploiting its electronic and vibrational analogies to MgB2. The
deformation potential of the hole states arising from the C-C bond stretch mode
is 60% larger than the corresponding quantity in MgB2 that drives its high Tc,
leading to very large electron-phonon matrix elements. The calculated coupling
strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon
coupling the likely mechanism. Higher doping should increase T_c somewhat, but
effects of three dimensionality primarily on the density of states keep doped
diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in
Physical Review Letters(2004)
Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions
Using Yang and Yang's particle-hole description, we present a thorough
derivation of the thermodynamic Bethe ansatz equations for a general
fermionic system in one-dimension for both the repulsive and
attractive regimes under the presence of an external magnetic field. These
equations are derived from Sutherland's Bethe ansatz equations by using the
spin-string hypothesis. The Bethe ansatz root patterns for the attractive case
are discussed in detail. The relationship between the various phases of the
magnetic phase diagrams and the external magnetic fields is given for the
attractive case. We also give a quantitative description of the ground state
energies for both strongly repulsive and strongly attractive regimes.Comment: 22 pages, 2 figures, slight improvements, some extra reference
Transport Far From Equilibrium --- Uniform Shear Flow
The BGK model kinetic equation is applied to spatially inhomogeneous states
near steady uniform shear flow. The shear rate of the reference steady state
can be large so the states considered include those very far from equilibrium.
The single particle distribution function is calculated exactly to first order
in the deviations of the hydrodynamic field gradients from their values in the
reference state. The corresponding non-linear hydrodynamic equaitons are
obtained and the set of transport coefficients are identified as explicit
functions of the shear rate. The spectrum of the linear hydrodynamic equation
is studied in detail and qualitative differences from the spectrum for
equilibrium fluctuations are discussed. Conditions for instabilities at long
wavelengths are identified and disccused.Comment: 32 pages, 1 figure, RevTeX, submitted to Phys. Rev.
Causality Problem in a Holographic Dark Energy Model
In the model of holographic dark energy, there is a notorious problem of
circular reasoning between the introduction of future event horizon and the
accelerating expansion of the universe. We examine the problem after dividing
into two parts, the causality problem of the equation of motion and the
circular logic on the use of the future event horizon. We specify and isolate
the root of the problem from causal equation of motion as a boundary condition,
which can be determined from the initial data of the universe. We show that
there is no violation of causality if it is defined appropriately and the
circular logic problem can be reduced to an initial value problem.Comment: 5 page
- …