4,591 research outputs found

    Highly Variable Genomic Landscape of Endogenous Retroviruses in the C57BL/6J Inbred Strain, Depending on Individual Mouse, Gender, Organ Type, and Organ Location.

    Get PDF
    Transposable repetitive elements, named the "TREome," represent ~40% of the mouse genome. We postulate that the germ line genome undergoes temporal and spatial diversification into somatic genomes in conjunction with the TREome activity. C57BL/6J inbred mice were subjected to genomic landscape analyses using a TREome probe from murine leukemia virus-type endogenous retroviruses (MLV-ERVs). None shared the same MLV-ERV landscape within each comparison group: (1) sperm and 18 tissues from one mouse, (2) six brain compartments from two females, (3) spleen and thymus samples from four age groups, (4) three spatial tissue sets from two females, and (5) kidney and liver samples from three females and three males. Interestingly, males had more genomic MLV-ERV copies than females; moreover, only in the males, the kidneys had higher MLV-ERV copies than the livers. Perhaps, the mouse-, gender-, and tissue/cell-dependent MLV-ERV landscapes are linked to the individual-specific and dynamic phenotypes of the C57BL/6J inbred population

    Improving Term Frequency Normalization for Multi-topical Documents, and Application to Language Modeling Approaches

    Full text link
    Term frequency normalization is a serious issue since lengths of documents are various. Generally, documents become long due to two different reasons - verbosity and multi-topicality. First, verbosity means that the same topic is repeatedly mentioned by terms related to the topic, so that term frequency is more increased than the well-summarized one. Second, multi-topicality indicates that a document has a broad discussion of multi-topics, rather than single topic. Although these document characteristics should be differently handled, all previous methods of term frequency normalization have ignored these differences and have used a simplified length-driven approach which decreases the term frequency by only the length of a document, causing an unreasonable penalization. To attack this problem, we propose a novel TF normalization method which is a type of partially-axiomatic approach. We first formulate two formal constraints that the retrieval model should satisfy for documents having verbose and multi-topicality characteristic, respectively. Then, we modify language modeling approaches to better satisfy these two constraints, and derive novel smoothing methods. Experimental results show that the proposed method increases significantly the precision for keyword queries, and substantially improves MAP (Mean Average Precision) for verbose queries.Comment: 8 pages, conference paper, published in ECIR '0

    Pressure effects on the superconducting thin film Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}

    Full text link
    We report electrical resistivity measurements on a high-quality Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2} thin film (x=0.4x=0.4) under pressure. The superconducting transition temperature (=39.95 K) of the optimally-doped thin film shows a dome shape with pressure, reaching a maximal value 40.8 K at 11.8 kbar. The unusually high superconducting transition temperature and its anomalous pressure dependence are ascribed to a lattice mismatch between the LaAlO3_3 substrate and the thin film. The local temperature exponent of the resistivity (n=dlnΔρ/dlnTn=d\text{ln}\Delta\rho/d\text{ln}T) shows a funnel shape around the optimal pressure, suggesting that fluctuations associated with the anomalous normal state are responsible for high-temperature superconductivity.Comment: To appear in Appl. Phys. Let

    Reply to Emv2, the only endogenous ecotropic murine leukemia virus of C57BL/6J mice

    Get PDF
    This correspondence was written in response to the comments by Young et al. Following careful evaluation of the relevant dataset, each of the points brought up by Young et al. has been addressed in this response. We anticipate this will clarify our findings regarding ERVmch8, an ecotropic endogenous retrovirus that was shown to have cerebellum-specific and age-dependent expression patterns in C57BL/6J mice

    Electron and phonon band-structure calculations for the antipolar SrPt3_{3}P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons

    Full text link
    SrPt3P has recently been reported to exhibit superconductivity with Tc = 8.4 K. To explore its superconducting mechanism, we have performed electron and phonon band calculations based on the density functional theory, and found that the superconductivity in SrPt3P is well described by the strong coupling phonon-mediated mechanism. We have demonstrated that superconducting charge carriers come from pd\pi-hybridized bands between Pt and P ions, which couple to low energy (~ 5 meV) phonon modes confined on the ab in-plane. These in-plane phonon modes, which do not break antipolar nature of SrPt3P, enhance both the electron-phonon coupling constant \lambda and the critical temperature Tc. There is no hint of a specific phonon softening feature in the phonon dispersion, and the effect of the spin-orbit coupling on the superconductivity is found to be negligible.Comment: 5 pages, 5 figures, 1 tabl

    Circuit Structure and Control Method to Reduce Size and Harmonic Distortion of Interleaved Dual Buck Inverter

    Get PDF
    A new circuit structure and control method for a high power interleaved dual-buck inverter are proposed. The proposed inverter consists of six switches, four diodes and two inductors, uses a dual-buck structure to eliminate zero-cross distortion, and operates in an interleaved mode to reduce the current stress of switch. To reduce the total harmonic distortion at low output power, the inverter is controlled using discontinuous-current-mode control combined with continuous-current-mode control. The experimental inverter had a power-conversion efficiency of 98.5% at output power = 1300 W and 98.3% at output power = 2 kW, when the inverter was operated at an input voltage of 400 V-DC, output voltage of 220 V-AC/60 Hz, and switching frequency of 20 kHz. The total harmonic distortion was < 0.66%, which demonstrates that the inverter is suitable for high-power dc-ac power conversion.11Ysciescopu

    Content distribution in vanets using network coding: The effect of disk i/o and processing o/h

    Get PDF
    Abstract—Besides safe navigation (e.g., warning of approaching vehicles), car to car communications will enable a host of new applications, ranging from office-on-the-wheel support to entertainment. One of the most promising applications is content distribution among drivers such as multi-media files and software updates. Content distribution in vehicular networks is a challenge due to network dynamics and high mobility, yet network coding was shown to efficiently handle such dynamics and to considerably enhance performance. This paper provides an in-depth analysis of implementation issues of network coding in vehicular networks. To this end, we consider general resource constraints (e.g., CPU, disk, memory) besides bandwidth, that are likely to impact the encoding and storage management operations required by network coding. We develop an abstract model of the network coding procedures and implement it in the wireless network simulator to evaluate the impact of limited resources. We then propose schemes that considerably improve the use of such resources. Our model and extensive simulation results show that network coding parameters must be carefully configured by taking resource constraints into account. I

    A Patterned Single Layer Graphene Resistance Temperature Sensor

    Get PDF
    Micro-fabricated single-layer graphenes (SLGs) on a silicon dioxide (SiO2)/Si substrate, a silicon nitride (SiN) membrane, and a suspended architecture are presented for their use as temperature sensors. These graphene temperature sensors act as resistance temperature detectors, showing a quadratic dependence of resistance on the temperature in a range between 283 K and 303 K. The observed resistance change of the graphene temperature sensors are explained by the temperature dependent electron mobility relationship (~T−4) and electron-phonon scattering. By analyzing the transient response of the SLG temperature sensors on different substrates, it is found that the graphene sensor on the SiN membrane shows the highest sensitivity due to low thermal mass, while the sensor on SiO2/Si reveals the lowest one. Also, the graphene on the SiN membrane reveals not only the fastest response, but also better mechanical stability compared to the suspended graphene sensor. Therefore, the presented results show that the temperature sensors based on SLG with an extremely low thermal mass can be used in various applications requiring high sensitivity and fast operation

    Minimal Width for Universal Property of Deep RNN

    Full text link
    A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or LpL^p function with the widths dx+dy+2d_x+d_y+2 and max{dx+1,dy}\max\{d_x+1,d_y\}, respectively, where the target function maps a finite sequence of vectors in Rdx\mathbb{R}^{d_x} to a finite sequence of vectors in Rdy\mathbb{R}^{d_y}. We also compute the additional width required if the activation function is tanh\tanh or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs
    corecore