research

Pressure effects on the superconducting thin film Ba1βˆ’x_{1-x}Kx_{x}Fe2_{2}As2_{2}

Abstract

We report electrical resistivity measurements on a high-quality Ba1βˆ’x_{1-x}Kx_{x}Fe2_{2}As2_{2} thin film (x=0.4x=0.4) under pressure. The superconducting transition temperature (=39.95 K) of the optimally-doped thin film shows a dome shape with pressure, reaching a maximal value 40.8 K at 11.8 kbar. The unusually high superconducting transition temperature and its anomalous pressure dependence are ascribed to a lattice mismatch between the LaAlO3_3 substrate and the thin film. The local temperature exponent of the resistivity (n=dlnΔρ/dlnTn=d\text{ln}\Delta\rho/d\text{ln}T) shows a funnel shape around the optimal pressure, suggesting that fluctuations associated with the anomalous normal state are responsible for high-temperature superconductivity.Comment: To appear in Appl. Phys. Let

    Similar works

    Full text

    thumbnail-image

    Available Versions