6,227 research outputs found

    Editorial: water governance in a climate change world: appraising systemic and adaptive effectiveness

    Get PDF
    and other research outputs Editorial: water governance in a climate change world: appraising systemic and adaptive effectivenes

    Oxygen-Vacancy-Induced Orbital Reconstruction of Ti Ions at the Interface of LaAlO3/SrTiO3 Heterostructures: A Resonant Soft-X-Ray Scattering Study

    Get PDF
    Resonant soft-x-ray scattering measurements have been performed to investigate interface electronic structures of (LaAlO3/SrTiO3) superlattices. Resonant scattering intensities at superlattice reflections show clear evidence of degeneracy lifting in t(2g) states of interface Ti ions. Polarization dependence of intensities indicates the energy of d(xy) states is lower by similar to 1 eV than two other t(2g) states. The energy splitting is insensitive to epitaxial strain. The orbital reconstruction is induced by oxygen vacancies and confined to the interface within two unit cells, indicating charge compensation at the polar interfaces. DOI: 10.1103/PhysRevLett.110.017401X112723Nsciescopu

    Solution structure of the dimerization domain of the eurkaryotic stalk P1/P2 complex reveals the structural organization of the eukaryotic stalk

    Get PDF
    Poster Presentation: abstract A01The lateral ribosomal stalk is responsible for the kingdom‐specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk consists of the scaffold P0 protein which binds two copies of P1/P2 hetero‐dimers to form a P0(P1/P2)2 pentameric P‐complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N‐terminal dimerization domain …postprin

    Nonlinear Sigma Model for Disordered Media: Replica Trick for Non-Perturbative Results and Interactions

    Full text link
    In these lectures, given at the NATO ASI at Windsor (2001), applications of the replicas nonlinear sigma model to disordered systems are reviewed. A particular attention is given to two sets of issues. First, obtaining non-perturbative results in the replica limit is discussed, using as examples (i) an oscillatory behaviour of the two-level correlation function and (ii) long-tail asymptotes of different mesoscopic distributions. Second, a new variant of the sigma model for interacting electrons in disordered normal and superconducting systems is presented, with demonstrating how to reduce it, under certain controlled approximations, to known ``phase-only'' actions, including that of the ``dirty bosons'' model.Comment: 25 pages, Proceedings of the NATO ASI "Field Theory of Strongly Correlated Fermions and Bosons in Low - Dimensional Disordered Systems", Windsor, August, 2001; to be published by Kluwe

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    The Magic Angle "Mystery" in Electron Energy Loss Spectroscopy: Relativistic and Dielectric Corrections

    Full text link
    Recently it has been demonstrated that a careful treatment of both longitudinal and transverse matrix elements in electron energy loss spectra can explain the mystery of relativistic effects on the {\it magic angle}. Here we show that there is an additional correction of order (Zα)2(Z\alpha)^2 where ZZ is the atomic number and α\alpha the fine structure constant, which is not necessarily small for heavy elements. Moreover, we suggest that macroscopic electrodynamic effects can give further corrections which can break the sample-independence of the magic angle.Comment: 10 pages (double column), 6 figure
    corecore