11,386 research outputs found

    Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.

    Get PDF
    Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure

    Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    Get PDF
    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1

    Picosecond photoisomerization and rotational reorientation dynamics in solution

    Get PDF
    The trans-cis isomerization rates for stiff-diphenylbutadiene (S-DPB) in n-alkane solvents were measured using single photon counting methods and the rotational reorientation times τR for S-DPB and trans stilbene were obtained by picosecond polarization spectroscopy. In neither case did τR VS viscosity show Stokes-Einstein-Debye (SED) behavior. The values of τR were used to calculate the angular velocity correlation frequencies β using the Hubbard relation. The variation of isomerization rate with β was found to be predicted well by the Kramers equation when barrier frequencies of 154 cm-1 for stilbene and 16 cm-1 for S-DPB were used. This Kramers-Hubbard fit finesses questions regarding the validity of the one dimensional Kramers model and focuses attention on the SED equation. The dynamical relationship between the torsional friction, important in isomerization, and rotational friction, which determines the overall angular motion of the molecules, is discussed

    An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas

    Full text link
    An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.Comment: 13 pages, 4 figure

    Near-Perfect Synaptic Integration by Na(v)1.7 in Hypothalamic Neurons Regulates Body Weight

    Get PDF
    Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions

    Understanding the dispersion and assembly of bacterial cellulose in organic solvents

    No full text
    The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils

    Factors influencing pharmacists and pharmaceutical scientists’ membership in professional organisations: an international survey

    Get PDF
    Background: Professional organisations exist as international or national organisations, with each country establishing at least one national professional association. There remains a knowledge gap about factors that influence professional organisational involvement of pharmacists and pharmaceutical scientists. This study aims to explore the motivators and barriers of pharmacy professionals holding organisation membership from a global perspective. Methods: An online questionnaire was developed and disseminated between May and July 2021. The survey was open to all pharmacists and pharmaceutical scientists. The survey consisted of four sections; demographic information, questions about professional organisations, about the International Pharmaceutical Federation (FIP) and its impact on the members. Data were analysed descriptively. Results: A total of 1033 complete survey responses were received and included in the analysis. Of all respondents, 761 (73.7%) respondents were current members of a professional organisation and 272 (26.3%) were not members of any professional organisation. Overall, findings demonstrated networking, education, training and professional development opportunities as the main interests and anticipated activities, while the lack of clarity or need to join organisation, time, and financial constraints as the main barriers of pharmacy professionals holding membership. The majority of FIP members are satisfied with current FIP activities, and anticipate further networking opportunities, educational resources and grants made available to members. Conclusions: Understanding the perceptions and needs, as well as factors that influence engagement of pharmacists and pharmaceutical scientists is the key to enhancing membership. Professional organisations are highly encouraged to strengthen and target activities according to the identified motivators and barriers

    Vanishing of phase coherence in underdoped Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Coherent time-domain spectroscopy is used to measure the screening and dissipation of high-frequency electromagnetic fields in a set of underdoped Bi_2Sr_2CaCu_2O_8+d thin films. The measurements provide direct evidence for a phase-fluctuation driven transition from the superconductor to normal state, with dynamics described well by the Berezinskii-Kosterlitz-Thouless theory of vortex-pair unbinding.Comment: Nature, Vol. 398, 18 March 1999, pg. 221 4 pages with 4 included figure
    corecore