7,702 research outputs found

    Space-time translational gauge identities in Abelian Yang-Mills gravity

    Full text link
    We derive and calculate the space-time translational gauge identities in quantum Yang-Mills gravity with a general class of gauge conditions involving two arbitrary parameters. These identities of the Abelian group of translation are a generalization of Ward-Takahasi-Fradkin identities and important for general discussions of possible renormalization of Yang-Mills gravity with translational gauge symmetry. The gauge identities in Yang-Mills gravity with a general class of gauge conditions are substantiated by explicit calculations.Comment: 15 pages. To be published in The European Physical Journal - Plus (2012

    Wiedemann-Franz violation in the vortex state of a d-wave superconductor

    Full text link
    We show that the Wiedemann-Franz law is violated in the vortex state of a d-wave superconductor at zero temperature. We use a semiclassical approach, which includes the Doppler shift on the quasiparticles as well as the Andreev scattering from a random distribution of vortices. We also show that the vertex corrections to the electrical conductivity due to the anisotropy of impurity scattering become unimportant in the presence of a sufficiently large magnetic field.Comment: To be published in Physica C as a proceeding of M2S-HTSC Rio 200

    SU(2) Calorons and Magnetic Monopoles

    Full text link
    We investigate the self-dual Yang-Mills gauge configurations on R3Ă—S1R^3\times S^1 when the gauge symmetry SU(2) is broken to U(1) by the Wilson loop. We construct the explicit field configuration for a single instanton by the Nahm method and show that an instanton is composed of two self-dual monopoles of opposite magnetic charge. We normalize the moduli space metric of an instanton and study various limits of the field configuration and its moduli space metric.Comment: 17 pages, RevTex, 1 Figur

    Modelling the potential for permafrost development on a radioactive waste geological disposal facility in Great Britain

    Get PDF
    The safety case for a geological disposal facility (GDF) for radioactive waste based in Great Britain must consider the potential impact on the repository environment of permafrost during the 1 million years following GDF closure. The depth of penetration of permafrost, defined as ground which remains at or below 0 °C for at least 2 consecutive years, has been modelled for a future climate that uses the climate of the last glacial–interglacial cycle as an analogue. Two future climates are considered; an average estimate case considered to be the best estimate of ground surface temperatures during the last glacial–interglacial cycle, and a cold estimate case considered to be an extreme cold, but plausible future climate. Maximum modelled permafrost thicknesses across Great Britain range from 20 to 180 m for the average estimate climate and 180–305 m for the cold estimate climate. The presence of ice cover is an important determinant on permafrost development. Thick permafrost evolves during long periods of cold-based ice cover and during periods of ice retreat that results in ground exposure to very cold air temperatures. Conversely, warm-based ice has an insulating effect, shielding the ground from cold air temperatures that retards permafrost development. For a GDF at a depth greater than that predicted to be directly affected by permafrost, phenomena associated with permafrost, e.g., enhanced groundwater salinity at depth, will need to be taken into account when considering the impact on the engineered and natural barriers associated with a GDF

    Two-dimensional limit of exchange-correlation energy functional approximations in density functional theory

    Full text link
    We investigate the behavior of three-dimensional (3D) exchange-correlation energy functional approximations of density functional theory in anisotropic systems with two-dimensional (2D) character. Using two simple models, quasi-2D electron gas and two-electron quantum dot, we show a {\it fundamental limitation} of the local density approximation (LDA), and its semi-local extensions, generalized gradient approximation (GGA) and meta-GGA (MGGA), the most widely used forms of which are worse than the LDA in the strong 2D limit. The origin of these shortcomings is in the inability of the local (LDA) and semi-local (GGA/MGGA) approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density approximation (ADA) is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only relevant for understanding of the functionals but also practical applications to semiconductor quantum structures and materials such as graphite and metal surfaces. We also comment on the implication of our findings to the practical device simulations based on the (semi-)local density functional method.Comment: 21 pages including 9 figures, to be published in Phys. Rev.

    The creation of large photon-number path entanglement conditioned on photodetection

    Get PDF
    Large photon-number path entanglement is an important resource for enhanced precision measurements and quantum imaging. We present a general constructive protocol to create any large photon number path-entangled state based on the conditional detection of single photons. The influence of imperfect detectors is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure

    Marginal Deformations of Field Theories with AdS_4 Duals

    Full text link
    We generate new AdS_4 solutions of D=11 supergravity starting from AdS_4 x X_7 solutions where X_7 has U(1)^3 isometry. We consider examples where X_7 is weak G_2, Sasaki-Einstein or tri-Sasakian, corresponding to d=3 SCFTs with N=1,2 or 3 supersymmetry, respectively, and where the deformed solutions preserve N=1,2 or 1 supersymmetry, respectively. For the special cases when X_7 is M(3,2), Q(1,1,1) or N(1,1)_I we identify the exactly marginal deformation in the dual field theory. We also show that the volume of supersymmetric 5-cycles of N(1,1)_I agrees with the conformal dimension predicted by the baryons of the dual field theory.Comment: 28 pages, 2 figures; v2. typos correcte

    NR CFT3CFT_3 duals in M-theory

    Full text link
    We extend the search for supergravity solution duals of non-relativistic d=3d=3 CFTs to d=11d=11 supergravity. We consider the internal space to be an S2S^2 bundle over a product base: S2Ă—S2S^2 \times S^2 and S2Ă—T2S^2 \times T^2. For purely M-theoretic S2Ă—S2S^2 \times S^2, we find only magnetic fluxes preserving two supersymmetries. S2Ă—T2S^2 \times T^2 is far richer admitting in addition to magnetic fluxes, various non-trivial electric fluxes which break all supersymmetry.Comment: 18 pages, Minor corrections and added reference

    Minimizing Effective Many-Body Interactions

    Full text link
    A simple two-level model is developed and used to test the properties of effective interactions for performing nuclear structure calculations in truncated model spaces. It is shown that the effective many-body interactions sensitively depend on the choice of the single-particle basis and they appear to be minimized when a self- consistent Hartree-Fock basis is used.Comment: (15 pages of text and 1 postscript figure (Figure available upon request), Preprint Number not assigned ye

    Impact of surface discharge plasmas on performance of a metallized film capacitor

    Get PDF
    Surface breakdown discharges are one probable failure mechanism of metallized polymeric film capacitors used in power systems, traction drives, and other technological applications. To assess whether surface breakdown discharges may undergo considerable elongation on the electrode surface to affect significantly capacitor performance, an equivalent electric circuit model is developed for metallized polymer film capacitors under the thermal equilibrium condition. With the aid of a surface field gradient mechanism, propagation of surface plasmas is studied and the necessary condition for their possible elongation is obtained. Numerical examples of a metallized film capacitor are used to demonstrate that surface breakdown plasmas and their elongation are unlikely to affect capacitor performance in a significant fashion. Then the generic problem of plasma propagation is restudied under thermally nonequilibrium conditions. Based on a heat conduction formulation in the one-dimensional limit, a temperature gradient mechanism is proposed to explain the possible elongation of breakdown plasmas on an electrode surface. Numerical examples are again used to deduce that thermally nonequilibrium surface plasmas are unlikely to evolve into catastrophic flashover arcs to fail film capacitors
    • …
    corecore