11,053 research outputs found

    Geophysical Methods: an Overview

    Get PDF
    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry

    Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Get PDF
    A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH~5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH). Using the hygroscopicity tandem differential mobility analyzer (HTDMA), we measure the diameter-based hygroscopic growth factor (GF) of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the biogenic SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic), and formation of longer-chained oligomers (less hygroscopic). All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.11 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg) in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or ''ZSR'' approach) and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different HTDMA-classified diameters agree with each other to varying degrees. Lack of complete agreement may be a result of the non-idealities of the solutions that are not captured by the ZSR method. Comparing growth factors from different precursors, we find that GForg is inversely proportional to the precursor molecular weight and SOA yield, which is likely a result of the fact that higher-molecular weight precursors tend to produce larger and less hygroscopic oxidation products

    A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    No full text
    International audienceMany monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, ?-pinene, ?-pinene, 3-carene, d-limonene, ?-phellandrene, ?-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with ?-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night

    Dark states of dressed Bose-Einstein condensates

    Full text link
    We combine the ideas of dressed Bose-Einstein condensates, where an intracavity optical field allows one to design coupled, multicomponent condensates, and of dark states of quantum systems, to generate a full quantum entanglement between two matter waves and two optical waves. While the matter waves are macroscopically populated, the two optical modes share a single photon. As such, this system offers a way to influence the behaviour of a macroscopic quantum system via a microscopic ``knob''.Comment: 6 pages, no figur

    Light bending in a Coulombic field

    Full text link
    The nonlinear Euler-Heisenberg interaction bends light toward an electric charge. The bending angle and trajectory of light in a Coulombic field are computed in geometric optics.Comment: 4 pages; references and comments adde

    Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    No full text
    International audienceMeasurements of volatile organic compounds in a pine forest (Central California, 38.90° N, 120.63° W, 1315 m) reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13?66 µmol m?2 h?1 to produce the observed oxidation products. That is 6?30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute the largest fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals

    Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    No full text
    International audienceVertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m). These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals

    Some boundary effects in quantum field theory

    Full text link
    We have constructed a quantum field theory in a finite box, with periodic boundary conditions, using the hypothesis that particles living in a finite box are created and/or annihilated by the creation and/or annihilation operators, respectively, of a quantum harmonic oscillator on a circle. An expression for the effective coupling constant is obtained showing explicitly its dependence on the dimension of the box.Comment: 12 pages, Late

    A Holographic Model of Strange Metals

    Full text link
    We give a review on our recent work arXiv:1006.0779 [hep-th] and arXiv:1006.1719 [hep-th], in which properties of holographic strange metals were investigated. The background is chosen to be anisotropic scaling solution in Einstein-Maxwell-Dilaton theory with a Liouville potential. The effects of bulk Maxwell field, an extra U(1) gauge field and probe D-branes on the DC conductivity, the DC Hall conductivity and the AC conductivity are extensively analyzed. We classify behaviors of the conductivities according to the parameter ranges in the bulk theory and characterize conditions when the holographic results can reproduce experimental data.Comment: 34 pages, 15 figures, minor correction
    • …
    corecore