3,509 research outputs found

    Maintaining Vaccine Delivery Following the Introduction of the Rotavirus and Pneumococcal Vaccines in Thailand

    Get PDF
    Although the substantial burdens of rotavirus and pneumococcal disease have motivated many countries to consider introducing the rotavirus vaccine (RV) and heptavalent pneumococcal conjugate vaccine (PCV-7) to their National Immunization Programs (EPIs), these new vaccines could affect the countries' vaccine supply chains (i.e., the series of steps required to get a vaccine from their manufacturers to patients). We developed detailed computational models of the Trang Province, Thailand, vaccine supply chain to simulate introducing various RV and PCV-7 vaccine presentations and their combinations. Our results showed that the volumes of these new vaccines in addition to current routine vaccines could meet and even exceed (1) the refrigerator space at the provincial district and sub-district levels and (2) the transport cold space at district and sub-district levels preventing other vaccines from being available to patients who arrive to be immunized. Besides the smallest RV presentation (17.1 cm3/dose), all other vaccine introduction scenarios required added storage capacity at the provincial level (range: 20 L–1151 L per month) for the three largest formulations, and district level (range: 1 L–124 L per month) across all introduction scenarios. Similarly, with the exception of the two smallest RV presentation (17.1 cm3/dose), added transport capacity was required at both district and sub-district levels. Added transport capacity required across introduction scenarios from the provincial to district levels ranged from 1 L–187 L, and district to sub-district levels ranged from 1 L–13 L per shipment. Finally, only the smallest RV vaccine presentation (17.1 cm3/dose) had no appreciable effect on vaccine availability at sub-districts. All other RV and PCV-7 vaccines were too large for the current supply chain to handle without modifications such as increasing storage or transport capacity. Introducing these new vaccines to Thailand could have dynamic effects on the availability of all vaccines that may not be initially apparent to decision-makers

    Can designers and AI flourish together?

    Get PDF
    This is the final version. Available on open access from Routledge via the DOI in this recordEver since the emergence of artificial intelligence (AI) in the 1950s, it has been the subject of intense interest, offering the possibility of disrupting industries across a range of sectors. In the creative industries, AI is now being used to produce a range of creative works. In relation to design, AI offers new possibilities and is coupled with new challenges for what it means to be a designer. AI also enables cost-effective businesses and improvements to customer experience by analysing users’ behaviour patterns in real time and then providing customised services, allowing companies to target potential customers more effectively. These examples raise the question of whether AI will have a positive impact on design and designers. This provocation highlights some of the critical issues designers will have to consider if they are flourishing alongside AI

    UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells

    Get PDF
    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al

    Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains

    Get PDF
    Background:When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment.Methods:This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015.Results:Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled.Conclusions:When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs. © 2013 Haidari et al

    Four Patterns of Data-Driven Design Activities in New Product Development

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordPaper presented at the International Conference on Engineering Design, ICED23, Bordeaux, France, 24 - 28 July 2023In the midst of Industry 4.0 where digitalisation is stimulated through the Internet of Things (IoT), Big Data, and machine learning technologies, an increasing volume of valuable data has been acquired from sensors and interconnected devices. This data-driven paradigm can enable organisations to create new or improved products and services, build long-term customer relationships in a value co-creation manner, adapt to continuous business reconfiguration or address societal challenges such as sustainability. Scientific research addressing Data-driven design has increased steadily in the last few years. However, despite this, there is still a need for a comprehensive understanding of data-driven design processes. Thus, through a systematic literature review, we review the data-driven design activities observed in the new product and service development and types of data utilised in New Product Development (NPD) process. This paper contributes to design research and through reviewing the current landscape of Data-driven design identifies ten data-driven design activities and four-dimensional aspects in NPD processEngineering and Physical Sciences Research Council (EPSRC

    Global city region

    Get PDF

    To test or to treat? an analysis of influenza testing and Antiviral treatment strategies using economic computer modeling

    Get PDF
    Background: Due to the unpredictable burden of pandemic influenza, the best strategy to manage testing, such as rapid or polymerase chain reaction (PCR), and antiviral medications for patients who present with influenza-like illness (ILI) is unknown. Methodology/Principal Findings: We developed a set of computer simulation models to evaluate the potential economic value of seven strategies under seasonal and pandemic influenza conditions: (1) using clinical judgment alone to guide antiviral use, (2) using PCR to determine whether to initiate antivirals, (3) using a rapid (point-of-care) test to determine antiviral use, (4) using a combination of a point-of-care test and clinical judgment, (5) using clinical judgment and confirming the diagnosis with PCR testing, (6) treating all with antivirals, and (7) not treating anyone with antivirals. For healthy younger adults (<65 years old) presenting with ILI in a seasonal influenza scenario, strategies were only cost-effective from the societal perspective. Clinical judgment, followed by PCR and point-of-care testing, was found to be cost-effective given a high influenza probability. Doubling hospitalization risk and mortality (representing either higher risk individuals or more virulent strains) made using clinical judgment to guide antiviral decision-making cost-effective, as well as PCR testing, point-of-care testing, and point-of-care testing used in conjunction with clinical judgment. For older adults (≥65 years old), in both seasonal and pandemic influenza scenarios, employing PCR was the most cost-effective option, with the closest competitor being clinical judgment (when judgment accuracy ≥50%). Point-of-care testing plus clinical judgment was cost-effective with higher probabilities of influenza. Treating all symptomatic ILI patients with antivirals was cost-effective only in older adults. Conclusions/Significance: Our study delineated the conditions under which different testing and antiviral strategies may be cost-effective, showing the importance of accuracy, as seen with PCR or highly sensitive clinical judgment. © 2010 Lee et al

    Would school closure for the 2009 H1N1 influenza epidemic have been worth the cost?: a computational simulation of Pennsylvania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the 2009 H1N1 influenza epidemic, policy makers debated over whether, when, and how long to close schools. While closing schools could have reduced influenza transmission thereby preventing cases, deaths, and health care costs, it may also have incurred substantial costs from increased childcare needs and lost productivity by teachers and other school employees.</p> <p>Methods</p> <p>A combination of agent-based and Monte Carlo economic simulation modeling was used to determine the cost-benefit of closing schools (vs. not closing schools) for different durations (range: 1 to 8 weeks) and symptomatic case incidence triggers (range: 1 to 30) for the state of Pennsylvania during the 2009 H1N1 epidemic. Different scenarios varied the basic reproductive rate (R<sub>0</sub>) from 1.2, 1.6, to 2.0 and used case-hospitalization and case-fatality rates from the 2009 epidemic. Additional analyses determined the cost per influenza case averted of implementing school closure.</p> <p>Results</p> <p>For all scenarios explored, closing schools resulted in substantially higher net costs than not closing schools. For R<sub>0 </sub>= 1.2, 1.6, and 2.0 epidemics, closing schools for 8 weeks would have resulted in median net costs of 21.0billion(9521.0 billion (95% Range: 8.0 - 45.3billion).Themediancostperinfluenzacaseavertedwouldhavebeen45.3 billion). The median cost per influenza case averted would have been 14,185 (5,4235,423 - 30,565) for R<sub>0 </sub>= 1.2, 25,253(25,253 (9,501 - 53,461)forR<sub>0</sub>=1.6,and53,461) for R<sub>0 </sub>= 1.6, and 23,483 (8,8708,870 - 50,926) for R<sub>0 </sub>= 2.0.</p> <p>Conclusions</p> <p>Our study suggests that closing schools during the 2009 H1N1 epidemic could have resulted in substantial costs to society as the potential costs of lost productivity and childcare could have far outweighed the cost savings in preventing influenza cases.</p
    corecore