2,493 research outputs found
The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest
Recommended from our members
Why Are People's Decisions Sometimes Worse with Computer Support?
In many applications of computerised decision support, a recognised source of undesired outcomes is operators' apparent over-reliance on automation. For instance, an operator may fail to react to a potentially dangerous situation because a computer fails to generate an alarm. However, the very use of terms like "over-reliance" betrays possible misunderstandings of these phenomena and their causes, which may lead to ineffective corrective action (e.g. training or procedures that do not counteract all the causes of the apparently "over-reliant" behaviour). We review relevant literature in the area of "automation bias" and describe the diverse mechanisms that may be involved in human errors when using computer support. We discuss these mechanisms, with reference to errors of omission when using "alerting systems", with the help of examples of novel counterintuitive findings we obtained from a case study in a health care application, as well as other examples from the literature
Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations
We present results of large-scale Monte Carlo simulations for a
three-dimensional Ising model with short range interactions and planar defects,
i.e., disorder perfectly correlated in two dimensions. We show that the phase
transition in this system is smeared, i.e., there is no single critical
temperature, but different parts of the system order at different temperatures.
This is caused by effects similar to but stronger than Griffiths phenomena. In
an infinite-size sample there is an exponentially small but finite probability
to find an arbitrary large region devoid of impurities. Such a rare region can
develop true long-range order while the bulk system is still in the disordered
phase. We compute the thermodynamic magnetization and its finite-size effects,
the local magnetization, and the probability distribution of the ordering
temperatures for different samples. Our Monte-Carlo results are in good
agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe
Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions
We study the influence of short-range electron-electron interactions on
scaling behavior near the integer quantum Hall plateau transitions. Short-range
interactions are known to be irrelevant at the renormalization group fixed
point which represents the transition in the non-interacting system. We find,
nevertheless, that transport properties change discontinuously when
interactions are introduced. Most importantly, in the thermodynamic limit the
conductivity at finite temperature is zero without interactions, but non-zero
in the presence of arbitrarily weak interactions. In addition, scaling as a
function of frequency, , and temperature, , is determined by the
scaling variable (where is the exponent for the temperature
dependence of the inelastic scattering rate) and not by , as it would
be at a conventional quantum phase transition described by an interacting fixed
point. We express the inelastic exponent, , and the thermal exponent, ,
in terms of the scaling dimension, , of the interaction strength
and the dynamical exponent (which has the value ), obtaining
and .Comment: 9 pages, 4 figures, submitted to Physical Review
Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results
We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio
Shear-induced quench of long-range correlations in a liquid mixture
A static correlation function of concentration fluctuations in a (dilute)
binary liquid mixture subjected to both a concentration gradient and uniform
shear flow is investigated within the framework of fluctuating hydrodynamics.
It is shown that a well-known long-range correlation at
large wave numbers crosses over to a weaker divergent one for wave numbers
satisfying , while an asymptotic shear-controlled
power-law dependence is confirmed at much smaller wave numbers given by , where , , and are the
mass concentration, the rate of the shear, the mass diffusivity and the
kinematic viscosity of the mixture, respectively. The result will provide for
the first time the possibility to observe the shear-induced suppression of a
long-range correlation experimentally by using, for example, a low-angle light
scattering technique.Comment: 8pages, 2figure
Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21days in wild-type mice to greater than 38days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4weeks and tibial mixed sensory and motor nerve at 3weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush
Edge effects in a frustrated Josephson junction array with modulated couplings
A square array of Josephson junctions with modulated strength in a magnetic
field with half a flux quantum per plaquette is studied by analytic arguments
and dynamical simulations. The modulation is such that alternate columns of
junctions are of different strength to the rest. Previous work has shown that
this system undergoes an XY followed by an Ising-like vortex lattice
disordering transition at a lower temperature. We argue that resistance
measurements are a possible probe of the vortex lattice disordering transition
as the linear resistance with
at intermediate temperatures due to dissipation at the array
edges for a particular geometry and vanishes for other geometries. Extensive
dynamical simulations are performed which support the qualitative physical
arguments.Comment: 8 pages with figs, RevTeX, to appear in Phys. Rev.
- …