60 research outputs found

    Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities.

    Get PDF
    BackgroundThe phosphatidylinositol 3-kinase (PI3K) pathway is frequently altered in cancer. This report describes the landscape of PI3K alterations in solid tumors as well as co-alterations serving as potential resistance/attenuation mechanisms.MethodsConsecutive samples were analyzed in a commercial Clinical Laboratory Improvement Amendment-certified laboratory using comprehensive genomic profiling performed by next-generation sequencing (315 genes). The co-alterations evaluated included the Erb-B2 receptor tyrosine kinase 2 (ERBB2), ERBB3, ERBB4, RAS, MET proto-oncogene tyrosine kinase (MET), and mitogen-activated protein kinase kinase (MAP2K) genes as well as tumor protein 53 (TP53), estrogen receptor 1 (ESR1), and androgen receptor (AR).ResultsAlterations in any of 18 PI3K-pathway associated genes were identified in 44% of 60,991 tumors. Although single base and insertions/deletions (indels) were the most frequent alterations, copy number changes and rearrangements were identified in 11% and 0.9% of patients, respectively. Overall, the most frequently altered genes were PIK3 catalytic subunit α (PIK3CA) (13%), phosphatase and tensin homolog (PTEN) (9%), and serine/threonine kinase 11 (STK11) (5%). Tumor types that frequently harbored at least 1 PI3K alteration were uterine (77%), cervical (62%), anal (59%), and breast (58%) cancers. Alterations also were discerned frequently in tumors with carcinosarcoma (89%) and squamous cell carcinoma (62%) histologies. Tumors with a greater likelihood of co-occurring PI3K pathway and MAPK pathway alterations included colorectal cancers (odds ratio [OR], 1.64; P < .001), mesotheliomas (OR, 2.67; P = .024), anal cancers (OR, 1.98; P = .03), and nonsquamous head and neck cancers (OR, 2.03; P = .019). The co-occurrence of ESR1 and/or AR alterations with PI3K alterations was statistically significant in bladder, colorectal, uterine, prostate, and unknown primary cancers.ConclusionsComprehensive genomic profiling reveals altered PI3K-related genes in 44% of solid malignancies, including rare disease and histology types. The frequency of alterations and the co-occurrence of resistance pathways vary by tumor type, directly affecting opportunities for targeted therapy

    Tissue expression of PD-L1 mediates peripheral T cell tolerance

    Get PDF
    Programmed death 1 (PD-1), an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. PD-1 has two ligands: PD-1 ligand 1 (PD-L1), which is expressed broadly on hematopoietic and parenchymal cells, including pancreatic islet cells; and PD-L2, which is restricted to macrophages and dendritic cells. To investigate whether PD-L1 and PD-L2 have synergistic or unique roles in regulating T cell activation and tolerance, we generated mice lacking PD-L1 and PD-L2 (PD-L1/PD-L2−/− mice) and compared them to mice lacking either PD-L. PD-L1 and PD-L2 have overlapping functions in inhibiting interleukin-2 and interferon-γ production during T cell activation. However, PD-L1 has a unique and critical role in controlling self-reactive T cells in the pancreas. Our studies with bone marrow chimeras demonstrate that PD-L1/PD-L2 expression only on antigen-presenting cells is insufficient to prevent the early onset diabetes that develops in PD-L1/PD-L2−/− non-obese diabetic mice. PD-L1 expression in islets protects against immunopathology after transplantation of syngeneic islets into diabetic recipients. PD-L1 inhibits pathogenic self-reactive CD4+ T cell–mediated tissue destruction and effector cytokine production. These data provide evidence that PD-L1 expression on parenchymal cells rather than hematopoietic cells protects against autoimmune diabetes and point to a novel role for PD-1–PD-L1 interactions in mediating tissue tolerance

    Pan-cancer landscape of CD274 (PD-L1) copy number changes in 244 584 patient samples and the correlation with PD-L1 protein expression

    No full text
    Introduction Several studies have shown clinical outcomes data that support the use of CD274 (PD-L1) copy-number (CN) gains and/or losses as a biomarker for immune checkpoint inhibitor (ICPI). Here, we present the landscape of CD274 CN changes across a large cohort of solid tumor cases and correlate these with PD-L1 protein expression by immunohistochemistry.Methods We analyzed all cases that underwent comprehensive genomic profiling (CGP) testing at Foundation Medicine between August 2014 and June 2020. CD274 CN changes were correlated with PD-L1 expression in tumor types where there were Food and Drug Administration approved companion diagnostic (CDx) claims and the CDx assay was used to assess PD-L1 expression.Results In all, 244 584 samples representing 290 solid tumor types were included in the study. Overall, 17.6% (42 983/244 584) had CD274 CN gains (>specimen ploidy), 44.6% (108 970/244 584) were CD274 CN neutral, and 37.9% (92 631/244 584) had CD274 CN loss. Using different CN cut offs to define CD274 positivity resulted in different prevalence estimates: ploidy +1, 17.4% (42 636/244 584); ploidy +2, 6.2% (15 183/244 584); ploidy +3, 2.2% (5375/244 584); ploidy +4, 1.1% (2712/244 584); and ploidy +8, 0.2% (434/244 584). The prevalence of CN changes and CN positivity varied based on tumor type. CD274 CN gains were significantly associated with PD-L1 positivity in NSCLC, urothelial carcinoma, breast carcinoma, cervical carcinoma, esophagus squamous cell carcinoma (SCC) and head and neck SCC (ORs 3.3, 3.0, 2.0, 4.5. 3.8, 8.4, 1.4, respectively; p<0.05) and with microsatellite instability status in only clinically relevant tumor types (gastric adenocarcinoma, colorectal adenocarcinoma, uterine endometrial adenocarcinoma, esophageal adenocarcinoma and gastroesophageal junction adenocarcinoma (OR: 5.2, 1.9, 3.2, 3.7 and 6.5, respectively; p<0.05)). Conversely, CD274 CN changes were not significantly correlated with tumor mutational burden in almost all the tumor types.Conclusion CD274 CN changes and PD-L1 expression were highly correlated in multiple tumor types. These prevalence data on CD274 CN changes across a large cohort of different solid tumors can be used to design future clinical studies to assess whether CD274 CN changes could be a potential biomarker for ICPI

    A pan-sarcoma landscape of telomeric content shows that alterations in RAD51B and GID4 are associated with higher telomeric content

    No full text
    Abstract Tumor cells need to activate a telomere maintenance mechanism, enabling limitless replication. The bulk of evidence supports that sarcomas predominantly use alternative lengthening of telomeres (ALT) mechanism, commonly associated with alterations in ATRX and DAXX. In our dataset, only 12.3% of sarcomas harbored alterations in these genes. Thus, we checked for the presence of other genomic determinants of high telomeric content in sarcomas. Our dataset consisted of 13555 sarcoma samples, sequenced as a part of routine clinical care on the FoundationOne®Heme platform. We observed a median telomeric content of 622.3 telomeric reads per GC-matched million reads (TRPM) across all samples. In agreement with previous studies, telomeric content was significantly higher in ATRX altered and POT1 altered sarcomas. We further observed that sarcomas with alterations in RAD51B or GID4 were enriched in samples with high telomeric content, specifically within uterus leiomyosarcoma for RAD51B and soft tissue sarcoma (not otherwise specified, nos) for GID4, Furthermore, RAD51B and POT1 alterations were mutually exclusive with ATRX and DAXX alterations, suggestive of functional redundancy. Our results propose a role played by RAD51B and GID4 in telomere elongation in sarcomas and open research opportunities for agents aimed at targeting this critical pathway in tumorigenesis

    Synthesis of Fungal Glycolipid Asperamide B and Investigation of Its Ability to Stimulate Natural Killer T Cells

    No full text
    The relationship between mold and asthma has been recognized for decades, but the molecular triggers of asthma generated by molds have not been fully elucidated. A glycolipid generated by <i>Aspergillus</i> species has recently been identified that triggers airway hyperreactivity via natural killer T cell activation. The synthesis of this glycolipid and structural variants designed to allow identification of the features of this glycolipid required for recognition by natural killer T cells is described
    • …
    corecore