8,169 research outputs found

    A comprehensive protection scheme for distribution systems

    Get PDF
    The objective of the research is to formulate and demonstrate protection schemes for radial and loop systems, an active distribution system, and a microgrid. The schemes are composed of a) A new loop scheme by utilizing voltage, current, and time (VIT) reclosers and sectionalizers and b) A new protection scheme, the dynamic state estimation-based protection, for active distribution systems and microgrids. The first part of the research explores the closing onto a fault during the conventional loop sectionalizing scheme and provides a VIT scheme that can solve the problem. The immediate benefit of the VIT schemes is a reduction of the nuisance trips because of the fault closing onto a fault. Moreover, the number of protection zones is increased by the application of the VIT sectionalizers. This thesis demonstrates the VIT protection scheme for a traditional distribution system and presents numerical experiments using various test scenarios with various fault locations. The simulation results verify that the protection scheme successfully performs the automatic load transfer scheme for a loop system. The second part of the research identifies the increased number of protection issues according to the installation of distributed generations (DGs) and provides solution to the problem. To solve the issue, a new fault detection scheme, dynamic state estimation-based protection scheme, is illustrated in this thesis based on synchronized measurements. The method uses dynamic state estimation, based on the dynamic model of the component that accurately reflects the nonlinear characteristics of the component. Numerical experiments show that the protection of active distribution systems and microgrids is feasible in real time.Ph.D

    Metal-organic chemical vapor deposition of 2D van der Waals materials-The challenges and the extensive future opportunities

    Get PDF
    The last decade has witnessed significant progress in two-dimensional van der Waals (2D vdW) materials research; however, a number of challenges remain for their practical applications. The most significant challenge for 2D vdW materials is the control of the early stages of nucleation and growth of the material on preferred surfaces to eventually create large grains with digital thickness controllability, which will enable their incorporation into high-performance electronic and optoelectronic devices. This Perspective discusses the technical challenges to be overcome in the metal-organic chemical vapor deposition (MOCVD) growth of 2D group 6 transition metal dichalcogenide (TMD) atomic crystals and their heterostructures, as well as future research aspects in vdW epitaxy for 2D TMDs via MOCVD. In addition, we encourage the traditional MOCVD community to apply their expertise in the field of "2D vdW materials," which will continue to grow at an exponential rate

    Feature Selection for Very Short-Term Heavy Rainfall Prediction Using Evolutionary Computation

    Get PDF
    We developed a method to predict heavy rainfall in South Korea with a lead time of one to six hours. We modified the AWS data for the recent four years to perform efficient prediction, through normalizing them to numeric values between 0 and 1 and undersampling them by adjusting the sampling sizes of no-heavy-rain to be equal to the size of heavy-rain. Evolutionary algorithms were used to select important features. Discriminant functions, such as support vector machine (SVM), k-nearest neighbors algorithm (k-NN), and variant k-NN (k-VNN), were adopted in discriminant analysis. We divided our modified AWS data into three parts: the training set, ranging from 2007 to 2008, the validation set, 2009, and the test set, 2010. The validation set was used to select an important subset from input features. The main features selected were precipitation sensing and accumulated precipitation for 24 hours. In comparative SVM tests using evolutionary algorithms, the results showed that genetic algorithm was considerably superior to differential evolution. The equitable treatment score of SVM with polynomial kernel was the highest among our experiments on average. k-VNN outperformed k-NN, but it was dominated by SVM with polynomial kernel

    Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat

    Get PDF
    Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia

    A photonic-crystal optical antenna for extremely large local-field enhancement

    Get PDF
    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q ~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement ~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators

    Two-dimensional heterogeneous photonic bandedge laser

    Full text link
    We proposed and realized a two-dimensional (2D) photonic bandedge laser surrounded by the photonic bandgap. The heterogeneous photonic crystal structure consists of two triangular lattices of the same lattice constant with different air hole radii. The photonic crystal laser was realized by room-temperature optical pumping of air-bridge slabs of InGaAsP quantum wells emitting at 1.55 micrometer. The lasing mode was identified from its spectral positions and polarization directions. A low threshold incident pump power of 0.24mW was achieved. The measured characteristics of the photonic crystal lasers closely agree with the results of real space and Fourier space calculations based on the finite-difference time-domain method.Comment: 14 pages, 4 figure
    corecore